Deep Learning and Remote Sensing for Agricultural Land Use Monitoring: A Spatio-Multitemporal Analysis of Rice Field Conversion using Optical Satellite Images

Authors

  • Arie Wahyu Wijayanto Politeknik Statistika STIS
  • Bill Van Ricardo Zalukhu BPS-Statistics Padang Lawas Utara Regency
  • Salwa Rizqina Putri Politeknik Statistika STIS
  • Nori Wilantika Politeknik Statistika STIS
  • Budi Yuniarto Politeknik Statistika STIS
  • Robert Kurniawan Politeknik Statistika STIS
  • Ahmad R. Pratama Stony Brook University, New York, USA

DOI:

https://doi.org/10.59395/ijadis.v6i2.1385

Keywords:

Remote Sensing, Deep Learning, Sustainable Agriculture, Optical Satellite Images, Paddy Field Monitoring

Abstract

Rice is a staple food for over half of the global population, making its production crucial for food security, especially in Indonesia, the world's third-largest rice consumer. Population growth and urban expansion have led to agricultural land conversion, necessitating efficient monitoring methods. Traditional approaches, such as area sample frameworks and tile surveys, are costly and time-consuming, prompting the need for remote sensing and deep learning solutions. This study utilizes medium-resolution Sentinel-1, Sentinel-2, and Landsat-8 optical satellite imagery from 2013 and 2021 to analyze land cover changes in West Bandung and Purwakarta Regencies, key agricultural regions in Indonesia. A deep learning model is developed to classify land cover, validated through ground-truth evaluation, and applied to assess spatio-multitemporal land use conversion, paddy field estimation, and conversion rates. Results show that deep learning models effectively classify land cover with high accuracy, revealing significant agricultural land loss due to urban expansion. This research contributes to artificial intelligence (AI)-driven land monitoring, particularly in tropical regions, and supports policymakers in sustainable food agriculture land management. The findings highlight the potential of integrating remote sensing and deep learning for cost-effective agricultural monitoring, ensuring food security and sustainable land use. Future research should explore higher-resolution imagery and advanced AI techniques to enhance predictive accuracy and decision-making.

Downloads

Download data is not yet available.

References

[1] M. A. Elbehri, A. Kaminski, and D. Dawe, "The changing structure of the world rice market, 2000–2015," Food Policy, vol. 92, p. 101832, 2020.

[2] U.S. Department of Agriculture, Foreign Agricultural Service, "Indonesia Rice Area, Yield and Production," [Online]. Available: https://ipad.fas.usda.gov/countrysummary/Default.aspx?crop=Rice&id=ID. [Accessed: Mar. 10, 2025].

[3] J. Fanzo, C. Davis, R. McLaren, and J. Choufani, "The effect of climate change across food systems: Implications for nutrition outcomes," Global Food Security, vol. 18, pp. 12–19, 2018. DOI: https://doi.org/10.1016/j.gfs.2018.06.001

[4] A. R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2015.

[5] S. Sefrin, M. Schmitt, and X. X. Zhu, "Detection of Land Use and Land Cover Changes Using Sentinel-2 Data: A Case Study of Klingenberg, Saxony, Germany," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2020, pp. 1234–1237.

[6] S. Wang, X. Liu, and Y. Zhou, "Remote Sensing-Based Detection and Prediction of Land Use and Land Cover Changes in Nepal," Remote Sens., vol. 12, no. 5, pp. 1–19, 2020.

[7] M. Hussain, S. Chen, and A. Cheng, "Remote Sensing-Based Analysis of Land Use/Land Cover Changes and Their Impact on Land Surface Temperature: A Case Study of Khanewal District, Punjab, Pakistan," Sustainability, vol. 13, no. 5, pp. 1–17, 2021. DOI: https://doi.org/10.1080/24749508.2021.1923272

[8] BPS, "Weekly Average Consumption of Several Food Items Commodity per Capita, 2007–2024," [Online]. Available: https://www.bps.go.id/en/statistics-table/1/OTUwIzE%3D/weekly-average-consumption-of-several-food-items-commodity-per-capita--2007-2023.html. [Accessed: Mar. 10, 2025].

[9] U.S. Department of Agriculture, Foreign Agricultural Service, "Production: Commodity: Rice," [Online]. Available: https://www.fas.usda.gov/data/production/commodity/0422110. [Accessed: Mar. 10, 2025].

[10] BPS, "Harvest Area and Rice Production in Jawa Barat Province 2023," Sep. 2024. [Online]. Available: https://jabar.bps.go.id/en/publication/2024/09/17/aee55363c1293f361932247a/harvest-area-and-rice-production-in-jawa-barat-province-2023.html. [Accessed: Mar. 10, 2025].

[11] A. W. Wijayanto, D. W. Triscowati, and A. H. Marsuhandi, “Maize field area detection in East Java, Indonesia: An integrated multispectral remote sensing and machine learning approach,” in Proc. 2020 12th Int. Conf. Inf. Technol. Electr. Eng. (ICITEE), 2020. DOI: https://doi.org/10.1109/ICITEE49829.2020.9271683

[12] R. Kurniawan, A. M. W. Saputra, A. W. Wijayanto, and W. Caesarendra, “Eco-environment vulnerability assessment using remote sensing approach in East Kalimantan, Indonesia,” Remote Sens. Appl.: Soc. Environ., vol. 27, p. 100791, 2022. DOI: https://doi.org/10.1016/j.rsase.2022.100791

[13] A. W. Wijayanto, N. Afira, and W. Nurkarim, “Machine learning approaches using satellite data for oil palm area detection in Pekanbaru City, Riau,” in Proc. 2022 IEEE Int. Conf. Cybern. Comput. Intell. (CyberneticsCom), 2022. DOI: https://doi.org/10.1109/CyberneticsCom55287.2022.9865301

[14] K. Aprianto, A. W. Wijayanto, and S. Pramana, “Deep learning approach using satellite imagery data for poverty analysis in Banten, Indonesia,” in Proc. 2022 IEEE Int. Conf. Cybern. Comput. Intell. (CyberneticsCom), 2022. DOI: https://doi.org/10.1109/CyberneticsCom55287.2022.9865480

[15] A. W. Wijayanto and S. R. Putri, “Estimating rice production using machine learning models on multitemporal Landsat-8 satellite images (Case Study: Ngawi Regency, East Java, Indonesia),” in Proc. 2022 IEEE Int. Conf. Cybern. Comput. Intell. (CyberneticsCom), 2022. DOI: https://doi.org/10.1109/CyberneticsCom55287.2022.9865364

[16] W. Nurkarim and A. W. Wijayanto, “Building footprint extraction and counting on very high-resolution satellite imagery using object detection deep learning framework,” Earth Sci. Inform., 2023. DOI: https://doi.org/10.1007/s12145-022-00895-4

[17] S. R. Putri, A. W. Wijayanto, and S. Pramana, “Multi-source satellite imagery and point of interest data for poverty mapping in East Java, Indonesia: Machine learning and deep learning approaches,” Remote Sens. Appl.: Soc. Environ., vol. 29, p. 100889, 2023. DOI: https://doi.org/10.1016/j.rsase.2022.100889

[18] B. V. R. Zalukhu, A. W. Wijayanto, and M. I. Habibie, “Marine vessels detection on very high-resolution remote sensing optical satellites using object-based deep learning,” in Proc. 2022 IEEE Int. Conf. Commun., Netw. Satellite (COMNETSAT), pp. 149–154, 2022. DOI: https://doi.org/10.1109/COMNETSAT56033.2022.9994340

[19] N. A. Utami, A. W. Wijayanto, S. Pramana, and E. T. Astuti, “Spatially granular poverty index (SGPI) for urban poverty mapping in Jakarta metropolitan area (JMA): A remote sensing satellite imageries and geospatial big data approach,” Earth Sci. Inform., vol. 16, pp. 3531–3544, 2023. DOI: https://doi.org/10.1007/s12145-023-01084-7

[20] M. S. C. Claire, S. R. Putri, and A. W. Wijayanto, “A land cover change analysis of buffer areas in New Capital City of Nusantara, Indonesia: A cellular automata approach on satellite imageries data,” in Proc. Int. Conf. Data Sci. Official Stat., vol. 2023, no. 1, pp. 132–149, 2023. DOI: https://doi.org/10.34123/icdsos.v2023i1.338

[21] N. A. Daulay, S. R. Putri, A. W. Wijayanto, and I. Y. Wulansari, “Optimizing malaria control: Granular and cost-effective mosquito habitat index in endemic areas through satellite imagery,” Knowl. Eng. Data Sci., vol. 7, no. 1, pp. 40–57, 2024. DOI: https://doi.org/10.17977/um018v7i12024p40-57

[22] M. Feriyanto, A. W. Wijayanto, I. Y. Wulansari, and N. B. Parwanto, “Small area estimation approaches using satellite imageries auxiliary data for estimating per capita expenditure in West Java, Indonesia,” J. Apl. Stat. Komput. Stat., vol. 16, no. 2, 2024. DOI: https://doi.org/10.34123/jurnalasks.v16i2.799

[23] M. Forkel, N. Carvalhais, C. Rödenbeck, M. D. Mahecha, K. Thonicke, and M. Reichstein, "Trend change detection in NDVI time series: Effects of inter-annual variability and methodology," Remote Sensing, vol. 5, no. 5, pp. 2113-2144, 2013. DOI: https://doi.org/10.3390/rs5052113

[24] S. Du, Y. Zhang, F. Ling, Y. Wang, and W. Li, "Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band," Remote Sensing, vol. 8, no. 4, p. 354, 2016. DOI: https://doi.org/10.3390/rs8040354

[25] H. Gao, N. Zhang, and X. He, "A new integrated approach for water body extraction from high-resolution remote sensing imagery," Remote Sensing Letters, vol. 7, no. 8, pp. 745-754, 2016.

[26] X. He, H. Weng, and Q. Li, "An automatic method for urban built-up area extraction using Landsat 8 OLI imagery," Remote Sensing, vol. 9, no. 10, p. 1000, 2017.

[27] Y. Zhang, J. Zhang, and K. Zhang, "Monitoring vegetation dynamics by coupling the enhanced vegetation index and land surface temperature in karst areas of China," Ecological Indicators, vol. 72, pp. 128-138, 2017.

[28] L. Jiang, J. Jiapaer, A. Bao, Y. Guo, and P. Ndayisaba, "Vegetation dynamics and responses to climate change and human activities in Central Asia," Science of the Total Environment, vol. 599-600, pp. 967-980, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.05.012

[29] A. P. Van Deventer, A. D. Ward, P. H. Gowda, and J. G. Lyon, "Using Thematic Mapper data to identify contrasting soil plains and tillage practices," Photogrammetric Engineering and Remote Sensing, vol. 63, no. 1, pp. 87-93, 1997.

[30] Y. Chen, Y. Rao, and G. Yang, "Mapping bare soil using Sentinel-2 images based on the bare soil index: A case study in the Weihe River Basin, China," Remote Sensing, vol. 13, no. 6, p. 1124, 2021.

[31] A. P. Andani, B. P. Hadian, and R. M. D. Prawira, "Land Suitability Analysis for Paddy Field Development in West Bandung Regency (Analisis Kesesuaian Lahan untuk Pengembangan Sawah di Kabupaten Bandung Barat),” TATALOKA, vol. 19, no. 3, pp. 139-151, 2017.

[32] A. Firdaus, R. D. Listyaningrum, and A. H. Pratomo, "Paddy Field Conversion in Purwakarta Regency and Its Impact on Rice Production (Konversi Lahan Sawah di Kabupaten Purwakarta dan Pengaruhnya terhadap Produksi Padi),” Indonesian Journal of Applied Science and Technology (InJAST), vol. 3, no. 2, pp. 101-111, 2022.

[33] Politeknik Statistika STIS. 2022. “Mapping of Classification and Conversion of Agricultural Land Using Satellite Imagery (Pemetaan Klasifikasi dan Alih Fungsi Lahan Pertanian dengan Citra Satelit)”. Laporan Hasil PKL 2021/2022 Nomor Buku 02 Riset 2.

[34] Y. C. Putra, A. W. Wijayanto, and G. A. Chulafak, "Oil palm trees detection and counting on Microsoft Bing Maps Very High Resolution (VHR) satellite imagery and Unmanned Aerial Vehicles (UAV) data using image processing thresholding approach," Ecological Informatics, vol. 72, 2022, Art. no. 101878. DOI: https://doi.org/10.1016/j.ecoinf.2022.101878

[35] D. W. Triscowati, B. Sartono, A. Kurnia, D. D. Domiri, and A. W. Wijayanto, "Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest," in Proceedings of SPIE - The International Society for Optical Engineering, vol. 11311, 2019, Art. no. 1131102. DOI: https://doi.org/10.1117/12.2547216

[36] M. Kadarisman, A. W. Wijayanto, and A. D. Sakti, "Government Agencies’ Readiness Evaluation towards Industry 4.0 and Society 5.0 in Indonesia," Social Sciences, vol. 11, no. 8, Art. no. 331, 2022. DOI: https://doi.org/10.3390/socsci11080331

Downloads

Published

2025-06-13

How to Cite

Deep Learning and Remote Sensing for Agricultural Land Use Monitoring: A Spatio-Multitemporal Analysis of Rice Field Conversion using Optical Satellite Images (A. W. Wijayanto, B. V. R. Zalukhu, S. R. Putri, N. Wilantika, B. Yuniarto, R. Kurniawan, & A. R. Pratama, Trans.). (2025). International Journal of Advances in Data and Information Systems, 6(2), 290~307. https://doi.org/10.59395/ijadis.v6i2.1385

Share