Grid-Based Ship Density Analysis and Anomaly Detection for Ship Movements Monitoring at Tanjung Priok Port
DOI:
https://doi.org/10.59395/ijadis.v6i1.1367Keywords:
Maritime, Ship, Port, AIS, AnomalyAbstract
Indonesia, as a maritime country, depends on ports to support inter-island transport and a smooth regional economy. So, the awareness of knowing the marine status with various platforms is needed. This research distinguishes itself from several previous studies on ship movement detection by concentrating specifically on anomalies in ship movement within areas of high traffic density. This research proposes to find out the ship density area using the grid technique and identify the anomalies that have occurred, as information on ship movements at Tanjung Priok Port. Anomaly detection is done by looking for it through visualization, where AIS data is converted into a form of visualization using the Python language. The results obtained two pieces of information, namely that the areas with the highest density are around the harbor, docks, and ship lanes. Then, two types of anomalies were detected, namely large ships with dangerous cargo speeding in dense areas and ships that behave differently compared to other ships with the same status.
Downloads
References
[1] Y. Rochwulaningsih, S. T. Sulistiyono, N. N. Masruroh, and N. N. Maulany, “Marine policy basis of Indonesia as a maritime state: The importance of integrated economy,” Mar Policy, vol. 108, p. 103602, Oct. 2019, doi: 10.1016/j.marpol.2019.103602. DOI: https://doi.org/10.1016/j.marpol.2019.103602
[2] I. Chapsos and J. A. Malcolm, “Maritime security in Indonesia: Towards a comprehensive agenda?,” Mar Policy, vol. 76, pp. 178–184, Feb. 2017, doi: 10.1016/j.marpol.2016.11.033. DOI: https://doi.org/10.1016/j.marpol.2016.11.033
[3] X. Fu et al., “AIS Data Analytics for Intelligent Maritime Surveillance Systems,” in Maritime Informatics, Springer, 2021, pp. 393–411. doi: 10.1007/978-3-030-50892-0_23. DOI: https://doi.org/10.1007/978-3-030-50892-0_23
[4] D. Yang, L. Wu, S. Wang, H. Jia, and K. X. Li, “How big data enriches maritime research – a critical review of Automatic Identification System (AIS) data applications,” Transp Rev, vol. 39, no. 6, pp. 755–773, Nov. 2019, doi: 10.1080/01441647.2019.1649315. DOI: https://doi.org/10.1080/01441647.2019.1649315
[5] S. T. Sulistiyono and Y. Rochwulaningsih, “Contest for hegemony: The dynamics of inland and maritime cultures relations in the history of Java island, Indonesia,” Journal of Marine and Island Cultures, vol. 2, no. 2, pp. 115–127, Dec. 2013, doi: 10.1016/j.imic.2013.10.002. DOI: https://doi.org/10.1016/j.imic.2013.10.002
[6] S. Galić, Z. Lušić, and I. Skoko, “The role and importance of safety in maritime transportation,” Book of, p. 186, 2014.
[7] P. Kaluza, A. Kölzsch, M. T. Gastner, and B. Blasius, “The complex network of global cargo ship movements,” J R Soc Interface, vol. 7, no. 48, pp. 1093–1103, Jul. 2010, doi: 10.1098/rsif.2009.0495. DOI: https://doi.org/10.1098/rsif.2009.0495
[8] M. Winther, J. H. Christensen, M. S. Plejdrup, E. S. Ravn, Ó. F. Eriksson, and H. O. Kristensen, “Emission inventories for ships in the arctic based on satellite sampled AIS data,” Atmos Environ, vol. 91, pp. 1–14, Jul. 2014, doi: 10.1016/j.atmosenv.2014.03.006. DOI: https://doi.org/10.1016/j.atmosenv.2014.03.006
[9] K. Wolsing, L. Roepert, J. Bauer, and K. Wehrle, “Anomaly Detection in Maritime AIS Tracks: A Review of Recent Approaches,” Jan. 01, 2022, MDPI. doi: 10.3390/jmse10010112. DOI: https://doi.org/10.3390/jmse10010112
[10] B. J. Tetreault, “Use of the Automatic Identification System (AIS) for Maritime Domain Awareness (MDA),” in Proceedings of OCEANS 2005 MTS/IEEE, IEEE, Sep. 2005. doi: 10.1109/OCEANS.2005.1639983. DOI: https://doi.org/10.1109/OCEANS.2005.1639983
[11] D. Liu, X. Wang, Y. Cai, Z. Liu, and Z. J. Liu, “A novel framework of real-time regional collision risk prediction based on the RNN approach,” J Mar Sci Eng, vol. 8, no. 3, Mar. 2020, doi: 10.3390/jmse8030224. DOI: https://doi.org/10.3390/jmse8030224
[12] R. Zhen, M. Riveiro, and Y. Jin, “A novel analytic framework of real-time multi-vessel collision risk assessment for maritime traffic surveillance,” Ocean Engineering, vol. 145, pp. 492–501, Nov. 2017, doi: 10.1016/j.oceaneng.2017.09.015. DOI: https://doi.org/10.1016/j.oceaneng.2017.09.015
[13] F. Natale, M. Gibin, A. Alessandrini, M. Vespe, and A. Paulrud, “Mapping fishing effort through AIS data,” PLoS One, vol. 10, no. 6, Jun. 2015, doi: 10.1371/journal.pone.0130746. DOI: https://doi.org/10.1371/journal.pone.0130746
[14] A. Lo Duca and K. McDowell, “Using the S-DIKW framework to transform data visualization into data storytelling,” J Assoc Inf Sci Technol, 2024, doi: 10.1002/asi.24973. DOI: https://doi.org/10.2139/ssrn.5191362
[15] B. Dykes, Effective data storytelling: how to drive change with data, narrative and visuals. John Wiley & Sons, 2019.
[16] R. L. Scania and R. Laxhammar, “Anomaly detection for sea surveillance,” in 2008 11th International Conference on Information Fusion, IEEE, Jun. 2008. [Online]. Available: https://www.researchgate.net/publication/4369995
[17] J. Yang, L. Ma, and J. Liu, “Modeling and application of ship density based on ship scale conversion and grid,” Ocean Engineering, vol. 237, Oct. 2021, doi: 10.1016/j.oceaneng.2021.109557. DOI: https://doi.org/10.1016/j.oceaneng.2021.109557
[18] S. Cao, Y. Zeng, S. Yang, and S. Cao, “Research on Python Data Visualization Technology,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2021. doi: 10.1088/1742-6596/1757/1/012122. DOI: https://doi.org/10.1088/1742-6596/1757/1/012122
[19] S. Węglarczyk, “Kernel density estimation and its application,” ITM Web of Conferences, vol. 23, p. 00037, 2018, doi: 10.1051/itmconf/20182300037. DOI: https://doi.org/10.1051/itmconf/20182300037
[20] Y. Huang, Y. Li, Z. Zhang, and R. W. Liu, “GPU-Accelerated Compression and Visualization of Large-Scale Vessel Trajectories in Maritime IoT Industries,” IEEE Internet Things J, Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.13653 DOI: https://doi.org/10.1109/JIOT.2020.2989398
[21] G. S. K. Ranjan, A. Kumar Verma, and S. Radhika, “K-Nearest Neighbors and Grid Search CV Based Real Time Fault Monitoring System for Industries,” in 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), IEEE, Mar. 2019, pp. 1–5. doi: 10.1109/I2CT45611.2019.9033691. DOI: https://doi.org/10.1109/I2CT45611.2019.9033691
[22] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011, Accessed: Apr. 24, 2025. [Online]. Available: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?source=post_page
[23] M. J. Eniola, A. C. Pingal, and C. Caño, “Enhancing Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with Kernel Density Estimation,” The Mindanawan Journal of Mathematics, vol. 6, no. 2, pp. 113–133, 2024, doi: 10.62071/tmjm.v6i2.530.
[24] K. Wang, M. Liang, Y. Li, J. Liu, and R. W. Liu, “Maritime Traffic Data Visualization: A Brief Review,” in 2019 4th IEEE International Conference on Big Data Analytics, ICBDA 2019, Institute of Electrical and Electronics Engineers Inc., May 2019, pp. 67–72. doi: 10.1109/ICBDA.2019.8713227. DOI: https://doi.org/10.1109/ICBDA.2019.8713227
[25] W. Chen, F. Guo, and F. Y. Wang, “A Survey of Traffic Data Visualization,” Dec. 01, 2015, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/TITS.2015.2436897. DOI: https://doi.org/10.1109/TITS.2015.2436897
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Ramadhan Ikhsan, Panca Dewi Pamungkasari, Babag Purbantoro, Ira Diana Sholihati, Frenda Farahdinna, Josaphat Tetuko Sri Sumantyo, Damy Matheus Heezen

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.