Comparison of Text Classification Techniques in Fake News Detection in the Digital Information Age

Authors

  • Dimas Muhammad Ilham Faculty of Technology and Information, Universitas Ngudi Waluyo
  • Sri Mujiyono Faculty of Technology and Information, Universitas Ngudi Waluyo

DOI:

https://doi.org/10.59395/ijadis.v6i1.1365

Keywords:

Accuracy, Comparison of text classification techniques, Convolutional Neural Networks (CNN), Deep Learning, F1-score, Fake news, Precision, Recall, Recurrent Neural Networks (RNN)

Abstract

A comparison of text classification techniques for detecting fake news in the digital information age has been discussed in this study, with a focus on the application of Deep Learning methods, specifically Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). The increasing spread of fake news through digital platforms emphasizes the importance of developing effective methods for identifying inaccurate information. In this study, a news dataset was collected from various sources, and both models were applied for text classification analysis. The performance of the model was then measured based on accuracy, precision, recall, and F1-score. The results showed that although both have their own advantages, better results in terms of processing speed and classification accuracy were found in CNN compared to RNN. These findings provide important insights for the development of more efficient and effective fake news detection systems in the digital age.

Downloads

Download data is not yet available.

References

[1] E. Aïmeur, S. Amri, and G. Brassard, “Fake news, disinformation and misinformation in social media: a review,” Soc. Netw. Anal. Min., vol. 13, no. 1, 2023, doi: 10.1007/s13278-023-01028-5. DOI: https://doi.org/10.1007/s13278-023-01028-5

[2] C. M. Lai, M. H. Chen, E. Kristiani, V. K. Verma, and C. T. Yang, “Fake News Classification Based on Content Level Features,” Appl. Sci., vol. 12, no. 3, 2022, doi: 10.3390/app12031116. DOI: https://doi.org/10.3390/app12031116

[3] G. Di Domenico, J. Sit, A. Ishizaka, and D. Nunan, “Fake news, social media and marketing: A systematic review,” Journal of Business Research, vol. 124. 2021. doi: 10.1016/j.jbusres.2020.11.037. DOI: https://doi.org/10.1016/j.jbusres.2020.11.037

[4] Y. Papanastasiou, “Fake news propagation and detection: A sequential model,” Manage. Sci., vol. 66, no. 5, 2020, doi: 10.1287/mnsc.2019.3295. DOI: https://doi.org/10.1287/mnsc.2019.3295

[5] A. A. Khozin, F. A. Pratama, M. Ridwan, and ..., “Inflation and the Stability of Islamic Finance,” …, vol. 1, no. 2, 2022.

[6] S. Tufchi, A. Yadav, and T. Ahmed, “A comprehensive survey of multimodal fake news detection techniques: advances, challenges, and opportunities,” Int. J. Multimed. Inf. Retr., vol. 12, no. 2, 2023, doi: 10.1007/s13735-023-00296-3. DOI: https://doi.org/10.1007/s13735-023-00296-3

[7] T. D. Adjin-Tettey and F. Amenaghawon, “Countering the threats of dis/misinformation: Fact-checking practices of students of two universities in West Africa,” Online J. Commun. Media Technol., vol. 14, no. 1, 2024, doi: 10.30935/ojcmt/14134. DOI: https://doi.org/10.30935/ojcmt/14134

[8] A. Ünver, “Emerging technologies and automated fact-checking: tools, techniques and algorithms,” Tech. Algorithms, vol. 11, 2023.

[9] M. Waqas, S. Tu, Z. Halim, S. U. Rehman, G. Abbas, and Z. H. Abbas, “The role of artificial intelligence and machine learning in wireless networks security: principle, practice and challenges,” Artif. Intell. Rev., vol. 55, no. 7, 2022, doi: 10.1007/s10462-022-10143-2. DOI: https://doi.org/10.1007/s10462-022-10143-2

[10] M. Madani, H. Motameni, and R. Roshani, “Fake news detection using feature extraction, natural language processing, curriculum learning, and deep learning,” Int. J. Inf. Technol. Decis. Mak., vol. 23, no. 3, pp. 1063–1098, 2024. DOI: https://doi.org/10.1142/S0219622023500347

[11] M. Zulqarnain, R. Ghazali, Y. M. M. Hassim, and M. Rehan, “A comparative review on deep learning models for text classification,” Indones. J. Electr. Eng. Comput. Sci., vol. 19, no. 1, 2020, doi: 10.11591/ijeecs.v19.i1.pp325-335. DOI: https://doi.org/10.11591/ijeecs.v19.i1.pp325-335

[12] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised learning of universal sentence representations from natural language inference data,” in EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings, 2017. doi: 10.18653/v1/d17-1070. DOI: https://doi.org/10.18653/v1/D17-1070

[13] H. Thakar and B. Bhatt, “Fake news detection: recent trends and challenges,” Soc. Netw. Anal. Min., vol. 14, no. 1, p. 176, 2024. DOI: https://doi.org/10.1007/s13278-024-01344-4

[14] S. Mishra, P. Shukla, and R. Agarwal, “Analyzing Machine Learning Enabled Fake News Detection Techniques for Diversified Datasets,” Wireless Communications and Mobile Computing, vol. 2022. 2022. doi: 10.1155/2022/1575365. DOI: https://doi.org/10.1155/2022/1575365

[15] N. R. de Oliveira, P. S. Pisa, M. A. Lopez, D. S. V. de Medeiros, and D. M. F. Mattos, “Identifying fake news on social networks based on natural language processing: Trends and challenges,” Information (Switzerland), vol. 12, no. 1. 2021. doi: 10.3390/info12010038. DOI: https://doi.org/10.3390/info12010038

[16] M. F. Mridha, A. J. Keya, M. A. Hamid, M. M. Monowar, and M. S. Rahman, “A Comprehensive Review on Fake News Detection with Deep Learning,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3129329. DOI: https://doi.org/10.1109/ACCESS.2021.3129329

[17] S. Raponi, Z. Khalifa, G. Oligeri, and R. Di Pietro, “Fake News Propagation: A Review of Epidemic Models, Datasets, and Insights,” ACM Transactions on the Web, vol. 16, no. 3. 2022. doi: 10.1145/3522756. DOI: https://doi.org/10.1145/3522756

[18] A. A. Kurniawan, “ANALISIS PERFORMA PROGRESSIVE WEB APPLICATION (PWA) PADA PERANGKAT MOBILE,” J. Ilm. Inform. Komput., vol. 25, no. 1, 2020, doi: 10.35760/ik.2020.v25i1.2510. DOI: https://doi.org/10.35760/ik.2020.v25i1.2510

[19] H. Prabowo, “Pemanfaatan metode deep learning untuk klasifikasi teks pada deteksi berita hoaks di media sosial,” J. Inform. Univ. Brawijaya, vol. 16, no. 2, pp. 95–106, 2021.

[20] A. Alfando and R. Hayami, “KLASIFIKASI TEKS BERITA BERBAHASA INDONESIA MENGGUNAKAN MACHINE LEARNING DAN DEEP LEARNING: STUDI LITERATUR,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, 2023, doi: 10.36040/jati.v7i1.6486. DOI: https://doi.org/10.36040/jati.v7i1.6486

[21] E. A. Junita and R. R. Suryono, “Analisis Sentimen Hate Speech Mengenai Calon Wakil Presiden Indonesia Menggunakan Algoritma BERT,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 4, pp. 2042–2053, 2024. DOI: https://doi.org/10.29100/jipi.v9i4.5625

[22] S. G. Alexander, A. T. Ananto, I. P. A. P. M. Purnama, B. L. L. Habibullah, and N. A. Rakhmawati, “Analisis Sentimen Opini Masyarakat Indonesia Terhadap Konten Deepfake Tokoh Publik,” KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komputer), pp. 95–102, 2023.

Downloads

Published

2025-04-22

How to Cite

Comparison of Text Classification Techniques in Fake News Detection in the Digital Information Age (D. M. Ilham & S. . Mujiyono, Trans.). (2025). International Journal of Advances in Data and Information Systems, 6(1), 80-89. https://doi.org/10.59395/ijadis.v6i1.1365

Share