Implementation of ARIMA for Prediction of Paddy Rice Production in Cisolok Sub-District, Sukabumi District

Authors

  • Rafi Abdul Mugni Faculty of Science and Technology, Universitas Muhammadiyah Sukabumi
  • Iwan Rizal Setiawan Faculty of Science and Technology, Universitas Muhammadiyah Sukabumi
  • Didik Indrayana Faculty of Science and Technology, Universitas Muhammadiyah Sukabumi

DOI:

https://doi.org/10.59395/ijadis.v6i1.1356

Keywords:

Rice Production Prediction, Random Forest Regressor, KDD, Cisolok District, ARIMA, Knowledge Discovery in Databases

Abstract

Indonesia as an agricultural country, agriculture, especially paddy production, plays an important role in food security. However, Cisolok District, Sukabumi Regency faces challenges in terms of effective rice production management. This study aims to improve the accuracy of rice production prediction in Cisolok District by implementing Arima. The methodology used is Knowledge Discovery in Databases (KDD), which includes data selection, data pre-processing, model selection, model training, and model evaluation. The data used include weather attributes and paddy production, which are collected from various related sources. The results of the study indicate that the model built with Arima provides accurate estimates and can help farmers and decision makers in planning and managing paddy production more efficiently. These findings are expected to increase paddy productivity in Cisolok District, Sukabumi Regency.

Downloads

Download data is not yet available.

References

[1] Abdurrozzaq Hasibuan, Suhela Putri Nasution, Fitri Amja Yani, Henni Adlini Hasibuan, and Nyak Firzah, “Strategi Peningkatan Usaha Tani Padi Sawah Untuk Meningkatkan Perekonomian Masyarakat Desa,” ABDIKAN J. Pengabdi. Masy. Bid. Sains dan Teknol., vol. 1, no. 4, pp. 477–490, 2022, doi: 10.55123/abdikan.v1i4.1095. DOI: https://doi.org/10.55123/abdikan.v1i4.1095

[2] M. Bagas Septyono, A. Diki Prasetyo, B. Riza Pratama, A. Puspita Sari, and U. Veteran Jawa Timur, “Penerapan Metode Mamdani Untuk Prediksi Produksi Padi di Pulau Sumatra,” Semin. Nas. Inform. Bela Negara, vol. 3, pp. 2747–0563, 2023.

[3] F. Perdhana and I. Noviana, “Keragaan Agronomis Vub Padi Spesifik Lokasi Di Kabupaten Sukabumi,” Pros. Semin. Nas. Has. Penelit. Agribisnis VI, vol. 6, no. 1, pp. 241–247, 2022.

[4] H. Husna, B. Bakhtiar, and C. N. Ichsan, “Pengaruh Suhu, Pemupukan K dan N terhadap Pertumbuhan Tanaman Padi Inpari 30 (Oryza sativa L.),” J. Ilm. Mhs. Pertan., vol. 6, no. 4, pp. 81–90, 2021, doi: 10.17969/jimfp.v6i4.18715. DOI: https://doi.org/10.17969/jimfp.v6i4.18715

[5] M. Habib Rifai, N. Vera, N. Sekar, S. Dewi, and R. R. Narfandi, “Prototipe Alat Pengukur Kelembaban Tanah Berbasis Sensor Media Tanaman Padi,” J. Elektron. List. dan Teknol. Inf. Terap., vol. 5, no. 1, pp. 16–21, 2023.

[6] et al. Nurhidayat, “Aldy+Nurhidayat+1181,” vol. 2, no. 2, pp. 111–117, 2024. DOI: https://doi.org/10.51454/jimsh.v6i2.711

[7] F. Azizah, S. Suwarsito, and E. Sarjanti, “Pengaruh Pola Curah Hujan Terhadap Produktivitas Padi di Kecamatan Bukateja Kabupaten Purbalingga,” Sainteks, vol. 18, no. 1, p. 1, 2021, doi: 10.30595/sainteks.v18i1.10567. DOI: https://doi.org/10.30595/sainteks.v18i1.10567

[8] S. Mayasari, Sudiarti, and Yushardi, “Analisis Hubungan Intensitas Panas Energi Matahari dengan Proses Fotosintesis pada Tanaman Padi,” Mekanikal,InovasidanTeknologi, vol. 9, no. 1, pp. 2477–5029, 2023.

[9] Henny Puspita Sari and S. K. Sari, “Analisis Neraca Air Untuk Tanaman Padi Dalam Upaya Adaptasi Dan Mitigasi Bencana Terhadap Kelompok Rentan,” Ekasakti J. Penelit. Pengabdi., vol. 3, no. 2, pp. 156–170, 2023.

[10] D. Wulandari and R. Rumini, “Pemodelan dan Prediksi Produksi Padi Menggunakan Regresi Linear,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 12, no. 4, 2023, doi: 10.30591/smartcomp.v12i4.5905. DOI: https://doi.org/10.30591/smartcomp.v12i4.5905

[11] R. Kurniawan, A. Halim, and H. Melisa, “Prediksi Hasil Panen Pertanian Salak di Daerah Tapanuli Selatan Menggunakan Algoritma SVM (Support Vector Machine),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 2, pp. 903–912, 2023, doi: 10.30865/klik.v4i2.1246.

[12] A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023, doi: 10.24246/juses.v6i1p34-43. DOI: https://doi.org/10.24246/juses.v6i1p34-43

Downloads

Published

2025-04-30

How to Cite

Implementation of ARIMA for Prediction of Paddy Rice Production in Cisolok Sub-District, Sukabumi District (R. A. Mugni, I. R. . Setiawan, & D. . . Indrayana, Trans.). (2025). International Journal of Advances in Data and Information Systems, 6(1), 197-203. https://doi.org/10.59395/ijadis.v6i1.1356

Share