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 Rice is a staple food for over half of the global population, making its 
production crucial for food security, especially in Indonesia, the world's 
third-largest rice consumer. Population growth and urban expansion have led 
to agricultural land conversion, necessitating efficient monitoring methods. 
Traditional approaches, such as area sample frameworks and tile surveys, are 
costly and time-consuming, prompting the need for remote sensing and deep 
learning solutions. This study utilizes medium-resolution Sentinel-1, 
Sentinel-2, and Landsat-8 optical satellite imagery from 2013 and 2021 to 
analyze land cover changes in West Bandung and Purwakarta Regencies, key 
agricultural regions in Indonesia. A deep learning model is developed to 
classify land cover, validated through ground-truth evaluation, and applied to 
assess spatio-multitemporal land use conversion, paddy field estimation, and 
conversion rates. Results show that deep learning models effectively classify 
land cover with high accuracy, revealing significant agricultural land loss due 
to urban expansion. This research contributes to artificial intelligence (AI)-
driven land monitoring, particularly in tropical regions, and supports 
policymakers in sustainable food agriculture land management. The findings 
highlight the potential of integrating remote sensing and deep learning for 
cost-effective agricultural monitoring, ensuring food security and sustainable 
land use. Future research should explore higher-resolution imagery and 
advanced AI techniques to enhance predictive accuracy and decision-making.   
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1. INTRODUCTION 

Rice is widely recognized as one of the most essential agricultural commodities, serving as 
the primary staple for more than half of the global population—approximately three billion people 
[1]. During the 2021–2022 period, global rice consumption reached an estimated 509.87 million 
metric tons. Given its critical role in sustaining food systems and livelihoods, rice production is 
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fundamentally linked to global food security. This significance directly aligns with the United 
Nations Sustainable Development Goal (SDG) 2: “Zero Hunger,” which emphasizes the need to 
end hunger and ensure access to safe, nutritious, and sufficient food for all [2]. Indonesia has the 
world's third-biggest rice consumption, hence agriculture has evolved into a critical aspect to be 
aware of [3]. Furthermore, the majority of individuals make their livelihood in the agricultural 
sector. The increasing population and per capita consumption, primarily driven by rising household 
incomes, have led to a growing demand for rice. To maintain equilibrium and ensure food security, 
national rice production is expected to expand accordingly. Additionally, population growth has 
accelerated the development of non-agricultural economic infrastructure, contributing to the 
conversion of agricultural land for alternative uses. This shift underscores the necessity of 
comprehensive land-use monitoring to balance agricultural sustainability—particularly rice 
cultivation—with the rising demand for non-agricultural land. However, resource constraints have 
posed significant challenges to the effective implementation of such monitoring efforts. 

Statistics Indonesia (BPS) routinely publishes official data on harvested area and rice 
productivity to monitor the development of rice production across the country. Harvested area 
figures are derived using the Area Sample Framework (ASF) method during the last seven days of 
each month, while productivity estimates are obtained through tile surveys conducted during 
harvest periods. However, these conventional methods are often constrained by high operational 
costs, intensive labor requirements, and time-consuming procedures. To address these limitations, 
the adoption of cost-efficient data acquisition technologies—such as remote sensing—is strongly 
encouraged by international organizations including the United Nations Statistical Division 
(UNSD), the Food and Agriculture Organization (FAO), and the Asian Development Bank (ADB). 
Remote sensing is defined as the science and art of obtaining information about objects, areas, or 
phenomena through the analysis of data acquired without direct physical contact [4]. This 
technology offers a time-efficient and highly accurate means of producing integrated and 
comprehensive land cover data, thereby facilitating effective monitoring of land use and conversion 
dynamics [5], [6]. Despite its potential, the application of satellite imagery for monitoring changes 
in agricultural land use remains relatively underexplored, particularly within Indonesia’s tropical 
regions. 
 
2. RESEARCH METHOD 
2.1. Study Area 

West Bandung and Purwakarta Regencies in West Java Province, Indonesia are selected as 
study area due to their significant agricultural landscapes and notable trends in paddy field 
conversion; in West Bandung Regency, as of 2016, paddy fields covered approximately 15,953 
hectares, with land suitability analyses indicating an availability of 25,147 hectares for potential 
paddy field development [31], while in Purwakarta Regency, between 2013 and 2017, paddy fields 
shrank by 195.55 hectares (1%), primarily due to conversions to industrial use (117.99 ha), 
settlements (42.30 ha), and other infrastructures [32], highlighting the urgent need for research on 
sustainable rice field management and land use policies.  

Our methodology builds upon prior internal research [1], that explored the feasibility of 
satellite imagery for paddy field mapping. Unlike the earlier study, which provided an initial data 
assessment without a robust validation framework, this research demonstrates a significant 
methodological and analytical advancement utilizes Sentinel-1, Sentinel-2, and Landsat-8 imagery 
from multiple years for a comprehensive spatio-multitemporal analysis. 

 
2.2. Data 
This study utilizes medium-resolution optical satellite imagery from Sentinel-1, Sentinel-2, and 
Landsat-8, with data references from the years 2013 and 2021. Table 1 presents the list of satellite 
bands employed in this study. 
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Table 1. List of Sentinel-1, Sentinel-2, and Landsat-8 spectral bands 
Name Spatial Resolution (meters) Description 

Sentinel-1 
HH 10 Single co-polarization, horizontal transmit/horizontal receive 
HV 10 Dual-band cross-polarization, horizontal transmit/vertical receive 
VV 10 Single co-polarization, vertical transmit/vertical receive 
VH 10 Dual-band cross-polarization, vertical transmit/horizontal receive 
Sentinel-2 
B1 60 Aerosols 
B2 10 Blue 
B3 10 Green 
B4 10 Red 
B5 20 Red Edge 1 
B6 20 Red Edge 2 
B7 20 Red Edge 3 
B8 10 NIR 
B8A 20 Red Edge 4 
B9 60 Water vapor 
B10 60 Cirrus 
B11 20 SWIR 1 
B12 20 SWIR 2 
Landsat-8 
B1 30 Coastal aerosol 
B2 30 Blue 
B3 30 Green 
B4 30 Red 
B5 30 Near infrared 
B6 30 Shortwave infrared 1 
B7 30 Shortwave infrared 2 
B8 15 Band 8 Panchromatic 
B9 30 Cirrus 
B10 30 Thermal infrared 1, resampled from 100m to 30m 
B11 30 Thermal infrared 2, resampled from 100m to 30m 

 
The analysis involves the use of several remote sensing indices derived from satellite 

bands, includes: 
1. Normalized Difference Vegetation Index (NDVI) 

NDVI is used to assess vegetation health and density, calculated using the formula: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅	 − 	𝑅𝑒𝑑
𝑁𝐼𝑅	 + 	𝑅𝑒𝑑

 
Higher values generally indicate areas with dense and healthy vegetation cover. 

2. Normalized Difference Water Index (NDWI) 
NDWI highlights water features and moisture in vegetation using the formula: 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛	 − 	𝑁𝐼𝑅
𝐺𝑟𝑒𝑒𝑛	 + 	𝑁𝐼𝑅

 
It enhances the visibility of open water and damp surfaces in satellite imagery. 

3. Normalized Difference Built-up Index (NDBI) 
NDBI is designed to identify built-up or urbanized areas and is calculated as: 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅1	 − 	𝑁𝐼𝑅
𝑆𝑊𝐼𝑅1	 + 	𝑁𝐼𝑅

	
This index effectively separates developed land from vegetated or natural areas. 

4. Enhanced Vegetation Index (EVI) 
EVI is optimized for high-biomass regions and reduces atmospheric and canopy 
background effects. It is computed as: 

𝐸𝑉𝐼 = 2,5	 !"#	%	#&'
(!"#	)	*	#&'	%	+,-	./0&)	)	2

 
EVI provides more reliable vegetation estimates in densely forested zones. 

5. Soil Adjusted Vegetation Index (SAVI) 
SAVI adjusts vegetation measurements to reduce soil brightness interference, particularly 
in sparse vegetative areas. The formula is: 
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𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅	 − 	𝑅𝑒𝑑)(1	 + 	𝐼)
𝑁𝐼𝑅	 + 	𝑅𝑒𝑑	 + 	1

 
where L is a soil brightness correction factor, often set to 0.5. 

6. Normalized Difference Tillage Index (NDTI) 
NDTI is useful for detecting tillage and land disturbance in agricultural areas. It is 
calculated using: 

𝑁𝐷𝑇𝐼 =
𝑆𝑊𝐼𝑅1	 − 	𝑆𝑊𝐼𝑅2
𝑆𝑊𝐼𝑅1	 + 	𝑆𝑊𝐼𝑅2

 
This index helps differentiate between tilled and untilled soil surfaces. 

7. Bare Soil Index (BSI) 
BSI identifies areas with exposed soil and is calculated with the formula: 

𝐵𝑆𝐼 = 2,5	
[(𝑆𝑊𝐼𝑅1	 + 	𝑅𝑒𝑑) 	−	(𝑁𝐼𝑅	 + 	𝐺𝑟𝑒𝑒𝑛)]
[(𝑆𝑊𝐼𝑅1	 + 	𝑅𝑒𝑑) 	+	(𝑁𝐼𝑅	 + 	𝐺𝑟𝑒𝑒𝑛)]

 

It effectively separates bare land from vegetated and built-up regions. 
 

2.3. Methods 
 The research framework for this study integrates remote sensing and deep learning 

methodologies to address the critical challenges of agricultural land use monitoring, specifically the 
conversion of paddy fields in Indonesia. Figure 1 illustrates a schematic depiction of the study's 
research framework.The study acknowledges key limitations of traditional approaches, such as the 
area sampling frame (ASF) method, which is constrained by cost and accuracy, and the 
inconsistency in classification accuracy across satellite imagery. Additionally, rapid land use 
changes and the need for up-to-date rice planting estimates necessitate a more robust and scalable 
approach. The proposed solution leverages multi-source satellite data, including Sentinel-1, 
Sentinel-2, and Landsat-8, in combination with advanced machine learning and deep learning 
techniques. Algorithms such as Random Forest, Support Vector Machines, Decision Trees, and 
Gradient Boosting, along with deep learning models like Multi-Layer Perceptrons and 
Convolutional Neural Networks (CNNs), are employed to improve land classification accuracy. The 
integration of these methodologies ensures a comprehensive, automated, and scalable system for 
land use change detection.   

 

 
 

Figure 1. Research framework 
 

The study’s objectives are centered on identifying the best classification model for paddy 
field detection, estimating the planted area, and conducting spatio-multitemporal analyses of land 
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use conversion. The validation process involves ground-truth evaluations, ensuring that the remote 
sensing-derived classifications align with real-world observations. Performance metrics such as 
accuracy, precision, recall, and F1-score are used to assess model effectiveness, while additional 
ground-check evaluations include overall accuracy, user’s accuracy, producer’s accuracy, and 
commission/omission errors. These rigorous assessment measures enhance the reliability of the 
classification results, offering critical insights into agricultural land dynamics. The findings of this 
research will aid policymakers in sustainable land management by providing high-resolution, AI-
driven insights into the extent and patterns of paddy field loss. Furthermore, the integration of 
spectral bands, composite indices, and observed variables ensures that the developed model is robust 
and adaptable to future enhancements in AI-driven land monitoring systems. 
 
2.3.1. Data Acquisition and Preprocessing 

To ensure high-quality input data for land cover classification and spatio-multitemporal 
analysis, this study employs a rigorous data preprocessing pipeline. Preprocessing is a critical step 
in remote sensing analysis, transforming raw satellite imagery into a structured format suitable for 
deep learning-based land use classification. The preprocessing workflow consists of three key 
stages: cloud masking and image patching, feature extraction, and labeling. 

 
2.3.1.1. Cloud masking and mage patching 

Given the frequent cloud cover in tropical regions, effective cloud removal is essential to 
preserve the integrity of land cover classification. This study utilizes cloud masking techniques to 
detect and eliminate clouds and their shadows from Sentinel-1, Sentinel-2, and Landsat-8 imagery. 
Since cloud occlusion can obscure critical land features, a subsequent image patching process is 
applied, wherein cloudy pixels are replaced with corresponding cloud-free pixels from temporally 
adjacent images. The selection of replacement patches is guided by the principles of minimal land 
cover change and temporal proximity, ensuring the continuity and accuracy of spatial information 
through a gap-filling approach.   

 
2.3.1.2. Feature Extraction 

Following cloud correction, feature extraction is conducted to derive key spectral indices 
that enhance land cover discrimination. Feature extraction enables the identification of unique 
geospatial characteristics through mathematical transformations of spectral bands. The features 
utilized in this land use change mapping study comprise composite indices that represent the 
geographical characteristics of the study area. Specifically, seven key indices are employed: 
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 
Normalized Difference Built-up Index (NDBI), Enhanced Vegetation Index (EVI), Soil Adjusted 
Vegetation Index (SAVI), Normalized Difference Tillage Index (NDTI), and Bare Soil Index 
(BSI). These indices collectively improve the model’s ability to distinguish between land cover 
types, ensuring robust classification accuracy.   
 
2.3.1.3. Labeling and sample selection 

The final preprocessing step involves labeling, wherein land cover classes are assigned to 
geospatially homogeneous areas using polygon-based segmentation. This study classifies land 
cover into six categories: clouds, paddy fields, built-up areas, forests, water bodies, non-vegetative 
bare land, and fallow land. The labeling process is guided by administrative boundaries, with 
sample distribution proportional to the fraction of each land cover class within the region. These 
labeled samples serve as ground truth references, providing a foundation for training and validating 
the deep learning model. Through this comprehensive preprocessing framework, the study ensures 
high-fidelity data inputs for deep learning-based agricultural land monitoring, enabling precise 
detection of paddy field conversion and land use transformation over time.  
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2.3.2. Modelling 
The collected satellite imagery data and corresponding land cover labels serve as the 

foundation for developing a deep learning-based classification model. This study employs 
Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN) algorithms, leveraging 
their proven effectiveness in satellite imagery analysis. Deep learning models are selected due to 
their superior capacity to capture complex spatial and spectral patterns compared to traditional 
machine learning approaches. The independent variables in this study comprise composite indices 
derived from remote sensing data. The manually labeled land cover classes serve as the dependent 
variable, forming the basis for model training and validation.   

A total of twelve classification models are developed, with separate MLP and CNN 
models trained for West Bandung Regency and Purwakarta Regency, utilizing Landsat-8 (2013 and 
2021) and Sentinel-2 (2021) imagery. The models undergo rigorous evaluation using 10-fold cross-
validation, ensuring robust performance assessment across multiple iterations. Classification 
performance is measured using accuracy, precision, recall, and F1-score, providing a 
comprehensive evaluation of model effectiveness. The highest-performing model is then employed 
to generate land cover maps, which serve as the basis for subsequent spatio-temporal analysis.   

To enhance classification accuracy and reduce noise in the final land cover maps, post-
classification processing is conducted. This involves applying a minority/majority filtering 
technique, which refines classification outputs by reassigning ambiguous pixels based on the 
dominant surrounding land cover class. This approach ensures greater spatial coherence and 
minimizes classification errors. The final land cover maps are then subjected to both quantitative 
and visual evaluation, ensuring their reliability for further analysis. The best-performing results are 
subsequently utilized to assess land use conversion trends and inform policy recommendations for 
sustainable land management. 

 
2.3.3. Ground truth check 

Ground truth verification is a critical step in validating satellite imagery-based 
classification by comparing the spectral and spatial characteristics of objects in remote sensing data 
with their real-world counterparts. In this study, ground verification was conducted during 
fieldwork activities from January 31 to February 6, 2022. The classification results were 
systematically evaluated using a confusion matrix, a widely adopted method for assessing 
classification accuracy by quantifying agreement between predicted and actual land cover classes.   

Given constraints related to cost, time, and manpower, ground truth data collection was 
conducted in selected areas using a stratified random sampling approach. This approach entails 
stratifying the study area according to distinct land cover categories, followed by the random 
selection of sampling points within each defined stratum. Stratification ensures balanced 
representation across land cover types, reducing bias and improving the robustness of accuracy 
assessment. According to Haub (2015), stratification can be based on factors such as land cover, 
agroecological zones, map complexity, elevation, trends, administrative units, or other relevant 
attributes that influence spatial variability. By stratifying based on land cover class, this study 
ensures an adequate and proportional distribution of sample points across different land categories, 
enhancing the reliability of classification validation. Once the strata were established, simple 
random sampling was applied to select specific validation points within each stratum. The scope of 
this study, including details of the sampling strategy and validation approach, is further elaborated 
in Table 2. 

 
Table 2. Scope of The Study 

Scope Description 
Population All land cover in West Bandung Regency and Purwakarta Regency, both in West Java Province Indonesia, 

between 2013 and 2021 
Target 
population 

1. Paddy fields designated for food crops consisting of wetland agricultural land, dry land agricultural land, and 
fallow. 

2. Built-up areas includes buildings, houses, closed infrastructure, offices, toll roads, cross-provincial and 
district/city roads, and other roads that are quite wide 

3. Forest contains shrubs, grasslands, trees, tree-based plantations, and all types of forests. 
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Scope Description 
4. Water. 
5. Non-vegetative bare land including ex-mining and open land. 

Observation 
unit 

Classified land cover points 

Analysis unit Classified land cover points 
Sampling frame 1. Land cover map of West Bandung Regency and Purwakarta Regency, West Java Province Indonesia, in 2013 

and 2021. 
2. Medium resolution optical satellite images of Sentinel-1, Sentinel-2, and Landsat-8 for the West Bandung 

Regency and Purwakarta Regency areas. 
3. The sample framework used for ground checking is the 2021 land cover map from modeling results using 

Sentinel-2 medium resolution optical imagery. 
 
2.3.4. Analysis 
2.3.4.1. Rice planting area calculation 

The estimation of rice planting area was carried out based on the mapping results of land 
cover classification using Sentinel-2 and Landsat-8 imagery. To determine the projected rice 
planting area, it is assumed that all land that has been categorized as paddy fields is planted with 
rice. 

𝑟𝑖𝑐𝑒	𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔	𝑎𝑟𝑒𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠 × 𝑎𝑟𝑒𝑎	𝑝𝑒𝑟	𝑝𝑖𝑥𝑒𝑙 
The area of each pixel can be seen from the spatial resolution (Cahyono et al., 2019). The 

Sentinel-2 image has a spatial resolution of 10 m x 10 m and a pixel area of 100 𝑚3. Meanwhile, 
Landsat-8 imagery with a spatial resolution of 30 m x 30 m has an area of 900 𝑚3 per pixel. 

 
2.3.4.2. Land cover conversion analysis 

Detection of land that changes function is employed using the Post-Classification Change 
Detection (PCCD) approach. PCCD is a technique that produces land change maps based on the 
overlay of two maps of different years. 

𝑉	 = 	
𝐴3432 	− 	𝐴3425

𝐴3425
	× 	100% 

With 𝑉 (change in land use (%)), 𝐴3432 (land area in 2021 (ha)), 𝐴3425 (land area in 2013 (ha)). 
This technique is based on the comparison of pixels from two images. First, overlaying 

two classified maps from Landsat-8 satellite imagery in 2013 and 2021. Then compare the pixels 
on the 2013 and 2021 maps to find out changes in land cover that have occurred. The size of each 
pixel can be seen from the image resolution used, which is 30 m × 30 m or 900 𝑚3. 

 
2.3.4.3. Paddy field land use conversion rate analysis 

Land use change refers to the transformation of land from one designated use to another, 
often driven by socio-economic, environmental, and policy factors. In the context of this study, 
land conversion specifically pertains to the transformation of agricultural land, particularly paddy 
fields, into non-agricultural land uses. This shift may occur either permanently or temporarily, 
leading to the loss of productive rice-growing areas. The study focuses on the conversion of paddy 
fields into non-rice fields, which are categorized as built-up areas, forests, water bodies, and non-
vegetative bare land.   

To quantify the extent of this transition, the land conversion rate is defined as a metric 
representing the average rate at which paddy fields are converted into non-rice fields over a 
specified time period. This rate serves as a critical indicator for assessing the magnitude and pace 
of agricultural land loss, which has significant implications for food security, environmental 
sustainability, and regional land use planning. The calculation of land conversion is conducted 
using Formula X, which provides a standardized approach for measuring and analyzing these 
changes. 

𝑋6 	= 	
𝑛6
𝑁6
	× 	100% 

where 
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𝑋6 : Land conversion rate in the i-th sub-district 
𝑛6 : Number of pixels of interest classified as non-rice fields in 2021 in the i-th sub-district 
𝑁6 : Number of pixels of interest classified as rice fields in 2013 in the i-th sub-district 
Pixels of interest are pixels that are not classified as clouds in 2013 or 2021. 

Land conversion analysis is carried out partially and continuously. Partial analysis is used 
to determine the rate of rice field conversion from year to year, while continuous analysis is used to 
determine the growth rate of land area over a certain period of time. To calculate the rate of land 
conversion, the following formula can be used. 

𝑉 =
𝐿7 − 𝐿7%2	
𝐿7%2	

× 100% 

where 
𝑉 : Land conversion rate (%)  
𝐿7 : Land area in year t (ha) 
𝐿7%2 : Land area in year before t (ha) 

The rate of land conversion is calculated by comparing the land area in year t to that of the 
preceding year. Specifically, it is determined by subtracting the land area in the previous year from 
the area in year t, dividing the result by the previous year's land area, and then multiplying by 100 
to express it as a percentage. This method can be applied iteratively for each year to derive annual 
land conversion rates over a given period. If the V value of a land cover is less than zero, then the 
area of the land cover is interpreted as having decreased. The calculation results obtained are 
entered in the following land cover change rate tabulation table. 

 

 
Figure 2. Comparison of land cover classification data from the Senitnel-2 2021 (a) and Landsat-8 2021 (b) 

satellites in West Bandung Regency 
 

For each regency, the developed model is then used to predict land cover. Figure 2 depicts 
a comparison of land cover classification data from the Senitnel-2 2021 (a) and Landsat-8 2021 (b) 
satellites in West Bandung Regency. The findings show that cloud cover is predominantly detected 
in the Landsat-8 satellite classification results since the acquired Landsat-8 imagery has a lot of 
cloud cover. This demonstrates that in West Bandung Regency 2021, Landsat-8 remote sensing 
satellite imagery is more sensitive to cloud cover than Sentinel-2. A comparison of the 
classification results of the Sentinel-2 2021 (a) and Landsat-8 2013 (b) satellites shows that the two 
have a similar pattern. Built-up areas, forests, and non-vegetative bare land were all narrowed in 
2021. Otherwise, rice fields and water bodies have expanded. 
 
3. RESULTS AND DISCUSSION 
3.1. Model Development Results 

 Table 3 summarizes the results of the developed model's evaluation. It shows that the built model is 
good enough with accuracy, precision, recall, and an F1-score of more than 0.7. In addition, the 
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convolutional neural networks (CNN) model outperforms the multilayer perceptron (MLP) model, 
and the use Sentinel-2 remote sensing satellite image gives competitive advantage than Landsat-8. 

 
Table 3. Modeling Results 

Evaluation Model 
Sentinel-2 

2021 (West 
Bandung) 

Landsat-8 
2021 (West 
Bandung) 

Landsat-8 
2013 
(West 

Bandung) 

Sentinel-2 
2021 

(Purwakarta) 

Landsat-8 
2021 

(Purwakarta) 

Landsat-8 2013 
(Purwakarta) 

Accuracy 
MLP 0.92 0.78 0.93 0.9 0.77 0.78 

CNN 0.96 0.89 0.93 0.93 0.9 0.88 

Precision 
MLP 0.92 0.78 0.93 0.9 0.77 0.78 

CNN 0.96 0.89 0.93 0.93 0.9 0.88 

Recall 
MLP 0.8 0.64 0.91 0.84 0.63 0.65 

CNN 0.95 0.85 0.9 0.91 0.84 0.81 

F1-Score 
MLP 0.82 0.68 0.92 0.87 0.69 0.7 

CNN 0.95 0.87 0.92 0.92 0.87 0.84 
 

Figure 3 depicts a comparison of land cover classification data from the Sentinel-2 2021 (a) 
and Landsat-8 2021 (b) satellites in Purwakarta Regency A comparison of the classification results 
of the Sentinel-2 2021 (a) and Landsat-8 2013 (b) satellites shows that the two have a similar 
pattern. Water bodies and non-vegetative bare land were narrowed in 2021. Otherwise, rice fields 
and built-up areas have expanded. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Comparison of land cover classification data from the Sentinel-2 2021 (a) and Landsat-8 2021  
(b) Satellites in Purwakarta Regency 

 
3.2. Ground Truth Evaluation 

The evaluation (in proportion) of the ground truth check findings in this study is shown in 
Table 4. In this study, a ground truth check was carried out to validate the estimated land cover 
based on Sentinel-2 remote sensing satellite imagery in 2021. The calculation results show that the 
total accuracy value is 78.22 percent, which implies that the land cover that is accurately classified 
is 78.22 percent. The forest class had the highest user and producer accuracy, with 90.03 percent and 
83.92 percent, respectively. Meanwhile, the lowest user's accuracy and producer's accuracy values 
were in the non-vegetative bare land class, respectively at 35.09 percent and 41.50 percent. In 
contrast, the error of commission and error of omission values where the highest values of the two 
values occur in the non-vegetative bare land class are respectively 64.91 percent and 58.50 percent. 
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Meanwhile, the lowest error of commission and error of omission values of the two values occurred 
in the forest class respectively at 9.97 percent and 16.08 percent. 

 
Table 4. Ground truth results coefficient matrix 

Remote 
sensing results 

Ground truth results 

Total User’s 
accuracy 

Error of 
commission Rice field Built-up 

area Forest Water 
bodies 

Non-
vegetative 
bare land 

Rice field 0.2188 0.0191 0.051 0.004 0.0098 0.3027 0.7229 0.2771 

Built-up area 0.0138 0.0733 0.0252 0.0013 0.0013 0.115 0.6374 0.3626 

Forest 0.0416 0.003 0.4562 0.0015 0.0045 0.5067 0.9003 0.0997 

Water bodies 0.0069 0.0013 0.0084 0.0215 0.002 0.0401 0.5351 0.4649 
Non-vegetative 
bare land 0.0124 0.0078 0.0027 0.0002 0.0125 0.0355 0.3509 0.6491 

Total 0.2935 0.1044 0.5436 0.0285 0.03 1   

Producer’s 
accuracy 0.7456 0.7019 0.8392 0.7531 0.415 Overall accuracy 0.7822 

Error of 
omission 0.2544 0.2981 0.1608 0.2469 0.585    

 
3.3. Land Cover Conversion Analysis 
 

Table 5. Changes in West Bandung Regency and Purwakarta Regency land cover 

 

 
Figure 4. Comparison of land cover proportion in West Bandung Regency between 2013 and 2021 

 
Figure 4 shows that the four categories of land cover (built-up areas, paddy fields, non-

vegetative bare land, and water bodies) have decreased. This signifies that the land area in 2013 is 
greater than 2021. Built-up area decreased by 14.61 percent. Likewise, paddy fields decreased by 

Land 
cover type 

West Bandung Purwakarta 

2013 2021 Changes 2013 2021 Changes 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area 
(ha) % 

Paddy 
field 29,714.04 25.05 18,401.49 16.42 11,312.5 -38.07 12,926.88 14.81 18,287.55 21.48 5,360.67 41.47 

Built-up 
area 15,796.17 13.32 13,488.48 12.03 2,307.69 -14.61 10,808.46 12.38 11,948.13 14.04 1,139.67 10.54 

Forest 67,356.81 56.78 75,170.25 67.06 7,813.44 11.60 53,127.27 60.85 44,610.21 52.41 8,517.06 -16.03 

Water 
bodies 3,957.48 3.34 3,675.87 3.28 281.61 -7.12 7,858.44 9.00 5,012.91 5.89 2,845.53 -36,.1 

Non-
vegetative 
bare land 

1,797.84 1.52 1,363.05 1.22 434.79 -24.18 2,591.64 2.96 1,363.05 6.18 2,676.87 103.61 

Total 118,622.34 100.00 112,099.10 100.00 22,150.00  87,312.69 100.00 83,520.09 100   
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38.07 percent, non-vegetative bare land decreased by 24.18 percent, water bodies decreased by 
7.12 percent. On the other hand, forests increased by 11.60 percent. In West Bandung Regency, the 
change in paddy fields reached 38.07 percent between 2013 and 2021, which is the greatest change, 
implying that it changed by 4.76 percent per year. Water bodies witnessed the least change, with a 
change of 7.12 percent in land cover. Figure 5 depicts a thematic map of the percentage of yearly 
rice field changes for each subdistrict in West Bandung Regency. 

 

 
Figure 5. Yearly sub district level paddy field land cover changes in West Bandung Regency in percentage 

  
 Based on Figure 5, the majority of the sub-districts witnessed an annual change in paddy 
field land cover of more than 6%, either in increase or decrease. Cisarua, Parangpong, Ngamprah, 
Saguling, Cipongkor, Gununghalu, and Sindangkerta Districts had decrease of less than 6%. 
Cipeundeuy and Cipatat Districts were among those that witnessed increase. Padalarang and 
Batujajar Subdistricts have a relatively small proportion of land cover change, with an annual 
paddy field cover change of less than 2%. Statistics from the Food Crops and Horticulture Service 
on the area of paddy field area per regency in West Java for 2013-2020 show a change in paddy 
field area of 5,069 hectares with a percentage change of 1.73 percent. This comparison yielded a 
relative error value of 6.49 percent. 

 
Figure 6. Comparison of land cover proportion in Purwakarta Regency between 2013 and 2021 

 
Figure 6 shows that the three categories of land cover (paddy fields, built-up area, and 

non- vegetative bare land) have increased. This indicates that the land area in 2013 is smaller than 
2021. On the other hand, forests and water bodies have decreased. The biggest change occurred in 
non-vegetative bare land which increased by 103.61%, from 2.96% to 6.18%. Built-up areas 
witnessed the least change, with a 10.54% increased change in land cover area. Paddy fields 
increased by 41.47%. The forest decreased by 16.03%, and water bodies decreased by 36.21%. The 
area of paddy fields in Purwakarta Regency has changed by 41.47 percent in eight years, or 5.18 
percent each year. Figure 7 thematic maps show details on the percentage change for each sub-
district. 
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Figure 7. Yearly sub district level paddy field land cover change in Purwakarta Regency in percentage 

 
Based on Figure 7, it can be seen that the most sub-districts had an increase in annual 

paddy field cover of more over 6%, including Bungursari, Campaka, Sukasari, Kiarapedes, 
Wanayasa, Bojong, and Darangdan. However, Cibatu, Pasawahan, Jatiluhur, Tegal Waru, Plered, 
and Maniis are sub-districts that have a relatively small percentage of land cover change, which is 
less than 2%. Statistics Indonesia (Purwakarta Regency) shows that the area of paddy fields in 2013 
was 16,573 ha and 17,907 ha in 2021 with a percentage change of 1.01 percent (1,334 ha). This 
comparison yielded a relative error value of 4.18 percent. Moreover, Statistics from the Food Crops 
and Horticulture Service on the area of paddy field area per regency in West Java for 2013-2020 
show a change in paddy field area of 5,069 hectares with a percentage change of 1.73 percent. This 
comparison yielded a relative error value of 6.49 percent. Moreover, a relative error score of 4.58 
percent was obtained when comparing data from the Food Crops and Horticulture Service in terms 
of rice planting area per regency in West Java from 2013 to 2020.  

 
3.4. Estimating Rice Planting Area 

Land area calculation was generated using the Sentinel-2 satellite's land cover data to 
determine the rice planting area in West Bandung and Purwakarta Regencies in 2021. Table 6 
displays the land area estimation results. 

 
Table 6. Estimated paddy field area 

Land cover 
classification 

West Bandung 2021 
land cover area 

Purwakarta 2021 
land cover area 

ha % ha % 
Built-up area 13.796.24 11.00 14.268.91 14.35 

Paddy field 39.968.56 31.90 25.377.16 25.52 

Forest 69.607.37 55.55 52.164.11 52.46 

Non-vegetative dry land 784.51 0.63 1.529.49 1.54 

Water bodies 1.149.73 0.92 6.094.43 6.13 

Total 125.306.40 100.00 99.434.10 100.00 

 
The number of pixels for each classification of land cover is calculated from the 

labeling results and then transformed into a unit area. According to the table of land cover results in 
2021 for West Bandung Regency, the land cover area for the paddy field type was 39,968.55 ha 
(31.90%), while the land cover area for Purwakarta Regency was 25,377.16 ha (25.50%). 
Generally, the estimated paddy area in West Bandung Regency is 6.40 percent larger than in 
Purwakarta Regency.  

Figure 8 shows the total area of paddy fields in West Bandung Regency at the sub-
district level. Of the 16 sub-districts in West Bandung Regency, Gununghalu subdistrict has the 
highest rice planting area of 4,911.88 ha because many farmers were opening new paddy field 
areas in that region. In contrast, the lowest rice planting area was Parongpong subdistrict with 
961.64 ha rice planting area due to land use changes that occur suddenly in a short period of time. 
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The overall predicted rice planting area for 2021 in West Bandung Regency is 39,968.55 ha, 
whereas the total area for comparative data received from the Food Crops and Horticulture 
Department for 2020 is 45,713 ha. Based on this comparison, the relative inaccuracy is 12.56 
percent. 

 
Figure 8. Visualization of subdistrict level estimated rice planting area of West Bandung Regency in 2021 

 
Figure 9 shows the total rice planting area (ha) for each sub-district in Purwakarta 

Regency in 2021 obtained from the calculation results based on Sentinel-2 satellite imagery. Of the 
17 sub-districts in Purwakarta Regency, Sukatani subdistrict has the highest rice planting area of 
2,781.48 ha because many farmers were opening new paddy field areas in that region. In contrast, 
the lowest rice planting area was Parongpong subdistrict with 434.96 ha rice planting area due to 
land use changes that occur suddenly in a short period of time. The overall predicted rice planting 
area for 2022 in Purwakarta Regency is 25,377.16 ha, whereas the total area for comparative data 
received from the Statistics Indonesia for 2020 is 24.270 ha. Based on this comparison, the relative 
inaccuracy is 4.56 percent. 

 

 
Figure 9. Visualization of subdistrict level estimated rice planting area of Purwakarta Regency in 2021 

 
3.5. Paddy Field Land Use Conversion Rate 

Figure 10 illustrates the rate of land-use changes in West Bandung Regency by sub-
district. It can be seen that the subdistrict with the greatest rate of paddy fields change in West 
Bandung Regency is Saguling, which is equivalent to 76.35%. However, the sub-district with the 
lowest percentage of paddy field change was Cikalong Wetan Subdistrict, at 38.66%. The average 
land use change in West Bandung Regency is fairly large, which is 56.75%. Cililin, Cipongkor, 
Gununghalu, Ngamprah, Rongga, Saguling, and Sindangkerta are seven of the 16 sub-districts of 
West Bandung Regency that have higher rates of land conversion than the average. Meanwhile, 
nine other sub-districts that have below average rates of land conversion include Batujajar, 
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Cihampelas, Cikalong Wetan, Cipatat, Cipeundeuy, Cisarua, Lembang, Padalarang, and 
Parongpong. 

 

 
Figure 10. Thematic map of land change rates in West Bandung Regency 

 
Figure 11 illustrates the rate of land-use changes in Purwakarta Regency by sub-district. 

It can be seen that the subdistrict with the greatest rate of paddy fields change in Purwakarta 
Regency is Maniis, which is equivalent to 63.38%. However, the sub-district with the lowest 
percentage of paddy field change was Bojong Subdistrict, at 19.84%. The average land use change 
in West Bandung Regency is 32.94%. Jatiluhur, Sukasari, Maniis, Sukatani, Pasawahan, 
Purwakarta, dan Sindangkerta are seven of the 17 sub-districts of West Bandung Regency that have 
higher rates of land conversion than the average. Meanwhile, ten other sub-districts that have below 
average rates of land conversion include Bungursari, Cibatu, Campaka, Pondok Salam, Kiarapedes, 
Wanayasa, Bojong, Darangdan, Plered, dan Tegal Waru. 

 

 
Figure 11. Land use conversion rates in Purwakarta Regency 

 
3.6. Discussion 

Table 11 shows the matrix of changes in land cover area (ha) in West Bandung 
Regency. It can be seen that the largest land cover that has not changed from 2013 to 2021 is forest 
with an area of 51,756.21 ha, while the smallest is vacant non-vegetative land with an area of 
215.10 ha. Paddy fields covered 27,154.98 hectares in 2013, but by 2021, the area had decreased to 
17,734.23 ha, with 9,585.54 ha remaining unchanged since 2013. The change in paddy field area 
consisted of 1,933.47 ha which turned into built-up areas, 15,125.76 ha into forest, 169.29 ha into 
water bodies, and 340.92 ha into non-vegetative bare land. In 2021, the built-up areas area has 
decreased from 14,966.37 hectares in 2013 to 13,090.23 ha. The decrease in area was caused by 
changes in the area of paddy fields by 2,083.95 ha, forests by 3,062.07 ha, water bodies by 31.95 
ha, non-vegetative bare land by 136.44 ha, and the remainder still being built-up areas by 9,651.96 
ha. The forest area has increased from 59,044.95 ha to 71,029.89 ha. The increase in forest area 
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was caused by changes in other land cover including paddy fields, built-up areas, water bodies, and 
non-vegetative bare land which turned into forest. However, the area of water bodies has decreased 
from 3,799.89 hectares in 2013 to 3,603.42 ha in 2021. Non-vegetative bare land decreased to 
1,187.55 hectares in 2021. 

 
Table 11. Land cover area changes in West Bandung Regency 

2013 → 2021 Rice Fields Built-up 
Land 

Forest Water 
Bodies 

Non-vegetative 
Bare Land 

Total 
Rice Fields 9585.54 1933.47 15125.76 169.29 340.92 27154.98 
Built-up Land 2083.95 9651.96 3062.07 31.95 136.44 14966.37 
Forest 5389.74 1301.49 51756.21 122.22 475.29 59044.95 
Water Bodies 111.33 21.78 401.76 3245.22 19.8 3799.89 
Non-vegetated Bare Land 563.67 181.53 684.09 34.74 215.1 1679.13 
Total 17734.23 13090.23 71029.89 3603.42 1187.55 106645.3 

 
Table 12. Land cover area changes in Purwakarta Regency 

2013 → 2021 Rice Fields Built-up 
Land 

Forest Water 
Bodies 

Non-vegetative 
Bare Land 

Total 
Rice Fields 7549.74 609.84 1831.5 148.68 1729.53 11869.29 
Built-up Land 1259.19 7375.68 539.73 18.09 569.25 9761.94 
Forest 6459.75 2626.83 36855.27 52.47 1811.25 47805.57 
Water Bodies 743.04 520.65 832.68 4752.54 345.15 7194.06 
Non-vegetated Bare Land 1148.94 245.79 299.88 27.72 635.4 2357.73 
Total 17160.66 11378.79 40359.06 4999.5 5090.58 78988.59 

 
Table 12 shows the matrix of changes in land cover area (ha) in Purwakarta Regency. 

Based on Table 12, it can be seen that in 2021 the area of paddy fields in the Purwakarta Regency 
was 17,160.66 ha, greater than in 2013 (11,869.66 ha). Built-up areas has also increased in area. In 
2013, the built-up area was 9,761 ha; in 2021 the area changed to 11,378.79 ha. In contrast to 
paddy fields and built-up areas, forests and water bodies are decreasing in size. In 2013, forest area 
and water body area were 47,805.57 ha and 7,194.06 ha respectively. However, in 2021 forests and 
water bodies have changed respectively to 40,359.06 ha and 4,999.50 ha. 

Purwakarta Regency's built-up areas witnessed less change in land area than West 
Bandung Regency. In contrast, the other four categories of land cover in Purwakarta Regency, 
including as paddy fields, forest, non-vegetative bare land, and water bodies, had a greater change 
in land area than West Bandung Regency. As a result, the majority of land cover changes happened 
in Purwakarta Regency. 

According to the rate of paddy field conversion, West Bandung Regency has a substantially 
higher rate of land conversion than Purwakarta Regency; the average rate of land conversion in 
West Bandung Regency is 56.75%, while the rate in Purwakarta Regency is 32.94%. Moreover, 
West Bandung Regency has nine sub-districts with a land conversion rate greater than 50%, but 
Purwakarta Regency has just one sub-district. This demonstrates that not many inhabitants in 
Purwakarta Regency have transformed the function of paddy fields to non-rice fields, which is 
inversely proportional to West Bandung Regency, where many people have converted the function 
of paddy fields to non-rice fields. The value of changes in land conversion also shows that there is 
a reduction in land conversion in paddy fields in West Bandung Regency. Neural Network (CNN) 
model outperforms the Multilayer Perceptron (MLP) model in classifying land cover, and that 
Sentinel-2 imagery provides higher classification accuracy compared to Landsat-8. The evaluation 
metrics reveal a high overall classification accuracy, with 78.22% of land cover correctly classified, 
underscoring the reliability of deep learning models in remote sensing applications.   

A comparative analysis of land cover changes between 2013 and 2021 reveals significant 
regional variations. Built-up areas in Purwakarta Regency exhibited less expansion than in West 
Bandung Regency. However, other land cover types in Purwakarta Regency, including paddy 
fields, forests, non-vegetative bare land, and water bodies, underwent more substantial changes 
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compared to West Bandung Regency. The findings suggest that West Bandung Regency has a 
higher overall rate of land use change, yet the conversion of land to paddy fields has been 
declining. Notably, forests are the only land cover category in West Bandung Regency that has 
increased in area since 2013. In contrast, Purwakarta Regency experienced an increase in both 
paddy field and built-up area extents, while forests and water bodies showed relatively smaller 
changes.   

These findings highlight the potential of integrating deep learning and remote sensing for large-
scale agricultural land monitoring, offering a cost-effective and scalable approach for tracking land 
use changes and informing sustainable land management policies. Future research should explore 
higher-resolution satellite imagery and more advanced deep learning architectures to further 
enhance classification accuracy and predictive capabilities. 

 
4. CONCLUSION 

This study demonstrates the effectiveness of medium-resolution optical satellite 
imageries, specifically Sentinel-1, Landsat-8, and Sentinel-2, in mapping and analyzing the 
classification and conversion of agricultural land. The results indicate that the Convolutional 
Neural Network (CNN) model outperforms the Multilayer Perceptron (MLP) model in classifying 
land cover, and that Sentinel-2 imagery provides higher classification accuracy compared to 
Landsat-8. The evaluation metrics reveal a high overall classification accuracy, with 78.22% of 
land cover correctly classified, underscoring the reliability of deep learning models in remote 
sensing applications.   

A comparative analysis of land cover changes between 2013 and 2021 reveals significant 
regional variations. Built-up areas in Purwakarta Regency exhibited less expansion than in West 
Bandung Regency. However, other land cover types in Purwakarta Regency, including paddy 
fields, forests, non-vegetative bare land, and water bodies, underwent more substantial changes 
compared to West Bandung Regency. The findings suggest that West Bandung Regency has a 
higher overall rate of land use change, yet the conversion of land to paddy fields has been 
declining. Notably, forests are the only land cover category in West Bandung Regency that has 
increased in area since 2013. In contrast, Purwakarta Regency experienced an increase in both 
paddy field and built-up area extents, while forests and water bodies showed relatively smaller 
changes.   

Our findings highlight the potential of integrating deep learning and remote sensing for 
large-scale agricultural land monitoring, offering a cost-effective and scalable approach for 
tracking land use changes and informing sustainable land management policies. Future research 
should explore higher-resolution satellite imagery and more advanced deep learning architectures 
to further enhance classification accuracy and predictive capabilities. 
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