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 This study investigated the corrosion inhibition potential of ionic liquid 
compounds using a QSPR-based machine learning (ML) predictive model 
combined with DFT calculations. The Gradient Boosting (GB) model was 
identified as the most effective predictor, showing excellent accuracy with an 
R² value of 0.98, which is 5.38% higher than previous studies. In addition, 
the model showed RMSE (0.95), MAE (0.84), and MAD (0.94) values that 
were 65.95%, 67.19%, and 59.31% lower than those of previous studies. By 
integrating DFT simulations into the data updating process, facilitated by 
ML, the approach proved invaluable for identifying new corrosion inhibitors. 
This work highlights the ongoing refinement of data related to the corrosion 
inhibition effects of ionic liquid compounds. 
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1. INTRODUCTION 

Considerable research efforts have been dedicated to mitigating corrosion attacks on 
metals, predominantly iron alloys, emphasizing corrosion inhibitors derived from organic 
compounds. Their remarkable capacity to impede corrosion, coupled with features such as non-
toxicity, environmental compatibility, cost-effectiveness, and facile manufacturing processes, has 
garnered substantial interest [1], [2], [3], [4]. Organic compounds that integrate aromatic rings 
along with heteroatoms, such as nitrogen (N), oxygen (O), sulfur (S), and phosphorus (P), 
frequently manifest corrosion-inhibiting properties [5], [6], [7], [8]. 

In scientific and industrial domains, considerable attention has been directed toward ionic 
liquids (ILs) due to their advantages, including low toxicity, high thermal stability, robust ionic 
conductivity, substantial density, non-volatility, and an extensive electrochemical window. ILs 
have found multifaceted utility across various applications, including synthesis, analysis, catalysis, 
lubrication, and electrochemistry [9], [10], [11]. The corrosion resistance of steel has been 
systematically assessed through experimental studies employing various ionic liquids. As the 
inhibitor concentration increased, there was a proportional enhancement in the corrosion inhibition 
efficiency (CIE) [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22].  

https://creativecommons.org/licenses/by-sa/4.0/
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Owing to the rapid advancements in data science and machine learning (ML), alongside the 
innovation and creation of novel materials, materials informatics has emerged as a prominent 
approach to address this convergence [23], [24], [25], [26]. Given its capability to assess molecular 
attributes of compounds and correlate them with their chemical structure, the Quantitative 
Structure-Property Relationship model (QSPR) through ML methods has become a prevalent 
means of evaluating compound performance [27], [28], [29], [30]. In the domain of materials 
informatics, QSPR stands out as a rapid, reliable, and cost-effective technique [31], [32], [33]. 
Within the realm of corrosion inhibition, the Density Functional Theory (DFT) method enables the 
calculation and simulation of the electronic properties inherent in molecular structures [34], [35], 
[36]. 

Considering the inherent limitations associated with experimental studies, which 
necessitate substantial investment in terms of financial resources, time, and overall resources [37], 
[38], [39], [40], ML methods are employed in this research for expedited analysis and evaluation. 
In this study, we have explored optimal ML techniques based on DFT calculation-based QSPR 
models to estimate the CIE of these ionic liquids. This endeavor holds significant importance as it 
aids in streamlining the process of producing and evaluating novel anticorrosive materials even 
before embarking on experimental research. 
 
2. RESEARCH METHOD 
2.1. Dataset 
  Utilizing existing literature sources [15], [16], [18], [28], we have compiled a dataset 
covering thirty ionic liquid compounds. Quantitative chemical properties (QCP), including LUMO 
and HOMO energies, global hardness (η), global softness (σ), dipole moment (μ), ionization 
potential (I), electron affinity (A), energy gap (∆E), and electron transfer measure (∆N), are 
employed as features in the dataset. At the same time, CIE is designated as the target variable. The 
corrosion inhibition effectiveness of anti-corrosive chemicals is significantly influenced by QCP 
[41], [42]. Conventional calculations of QCP for the ionic liquid compounds, aimed at estimating 
their CIE values, relied on DFT simulations coupled with the Koopman approach [43].  
 
2.2. Exploratory Data Analysis  
  The preliminary analysis conducted before delving into the machine learning modeling 
process holds significant importance in comprehending the inherent characteristics of the data to be 
utilized. Exploratory data analysis (EDA) is a valuable tool among the various methodologies 
available. EDA serves the purpose of unveiling concealed patterns, detecting anomalies, addressing 
missing values, and pinpointing outliers within the dataset. Its role is pivotal in determining 
requisite preprocessing steps, such as normalization, categorical variable encoding, and 
understanding inter-variable relationships. This analysis aids in the judicious selection of the most 
impactful features for the model [45], [46]. 
 Furthermore, the application of Spearman correlation analysis proves instrumental in 
discerning relationships between features and targets within the data. Incorporating the F test 
during this phase aims to establish the significance and nature of associations between features and 
targets. Such an approach significantly contributes to a comprehensive evaluation of the dataset. 
EDA furnishes valuable insights into the foundational assumptions of the developing model but 
also facilitates subsequent refinements in later stages of data processing. This meticulous process 
ensures a holistic grasp of the dataset, enabling informed decisions regarding model development 
and fine-tuning. As a result, EDA plays a pivotal role in steering the course of model refinement 
and development, contributing to a more robust and effective outcome [47]. 
 
2.3. ML Modeling 
 The process of developing an ML model based on QSPR involves several steps. Figure 1 
depicts an illustrative representation detailing the developmental progression of the ML model. 
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Figure 1. Development of QSPR-based ML model 
 

Initially, the dataset is pre-processed to ensure its quality and usability. This preprocessing 
stage includes data cleaning and normalization. When dealing with large or inadequately sized 
datasets, a robust scaling strategy is an essential data normalization technique to mitigate model 
sensitivity issues. This preprocessing step significantly contributes to minimizing prediction errors 
[48]. Assessing the stability of the ML model involves iterative training to achieve the lowest 
statistical error value, employing the k-fold cross-validation (k-fold CV) approach [49]. The dataset 
is partitioned into five groups, one serving as the test set and the others as training sets in each 
training iteration. This method aims to address variance and bias concerns in machine learning. 
Depending on the dataset's size, a fold k = 5 or 10 is commonly utilized [50]. 

A comprehensive exploration of ML approaches was conducted to identify the most 
suitable model capable of capturing the unique attributes within the dataset of ionic liquid 
compounds. Several algorithms, including Bayesian, Elastic-Net (EN), Lasso, Ordinary Least 
Squares (OLS), and Ridge, representing linear regressor models, were evaluated for predicting the 
CIE of ionic liquid substances. Additionally, nonlinear regressor models such as K-Nearest 
Neighbors (KNN) and Support Vector Machine (SVM) were tested. Ensemble models were also 
considered, including Gradient Boosting (GB) and Random Forest (RF) regressors. Introducing a 
Neural Network model, the Multi-Layer Perceptron (MLPNN) model, further expanded the 
analysis. A subset of the dataset is utilized to train the models during model development. Within 
this training phase, the algorithms are exposed to the data to discern intricate patterns and 
correlations between the input features and the desired target output. The optimization of model 
parameters (hyperparameter tuning) is a crucial aspect of this training process, aimed at minimizing 
prediction errors and enhancing the model's predictive accuracy. 

Following the training phase, the model's performance is assessed using a distinct 
validation dataset to gauge metrics such as the coefficient of determination (R2), root mean square 
error (RMSE), mean absolute error (MAE), and mean absolute deviation (MAD). A high R2 value, 
approaching 1, signifies the model's effectiveness. The disparity between actual and predicted 
values is measured through metrics like RMSE, MAE, and MAD. As these numbers decrease, the 
prediction error diminishes. Evaluating these statistics is instrumental in determining the model's 
accuracy, as a lower statistical error indicates a more robust predictive model [51], [52], [53], [54]. 
This evaluation process is pivotal in refining and determining the most effective model among 
different algorithms or configurations.  
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In the context of the equation, where Y., Y2., and 	Y.′ denote the actual, mean, and predicted values, 
respectively.   
 
3. RESULTS AND DISCUSSION 
3.1. Exploratory Data Analysis 
 Exploratory Data Analysis is a crucial preliminary step before constructing an ML model, 
as it facilitates the meticulous preparation of data and comprehension of the requisite 
characteristics essential for the model to generate precise and dependable outcomes. 

 
(a) 

 

 
(b) 

Figure 2. Plots of (a) Spearman correlation and (b) p-value between features and target. 
 

 As illustrated in Figure 2(a), the Spearman correlation analysis highlights positive and 
negative correlations between the features employed and the target variable (CIE). Notably, no 
feature exhibits a correlation value of zero, affirming the presence of statistical correlation across 
all features. Examining the observed P-values in Figure 2(b), it is evident that they are notably low, 
nearly aligning with the commonly accepted threshold value of 0.05. This indicates a substantial 
level of statistical significance associated with these correlations. However, it is crucial to 
recognize that correlation, as depicted here, does not imply causation. While the features exhibit a 
statistically significant relationship with the target variable, establishing a causal connection 
necessitates additional comprehensive analyses beyond mere correlation assessments. In presenting 
these results, it is essential to exercise caution and refrain from inferring direct causative 
associations solely based on observed correlations. A clear understanding of the statistical 
relationships uncovered by the analysis is critical, and the interpretation should be made with the 
awareness that correlation does not imply causation. 
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Table 1. F-test result 
F-statistic score p-value 

755.12 4.13e-26 
 
 The previous correlation findings support the outcomes derived from the F-test showcased 
in Table 1. The F-statistic exhibits a notably high value and an exceedingly low p-value, nearly 
approaching zero. This substantiates statistically significant evidence suggesting that the collective 
model contributes significantly towards elucidating the variability inherent in the target variable. In 
essence, the rejection of the null hypothesis becomes apparent. This signifies compelling evidence 
indicating that at least one independent variable (feature) wields a substantial influence on the 
dependent variable (target) within the framework of the regression model. These observations 
underscore the model's capability to offer significant explanatory power concerning the target 
variable, signifying a meaningful relationship between the independent and dependent variables. 
 
3.2. Model Performance 
 Table 2 showcases the performance metrics of the tested model, encompassing R2, RMSE, 
MAE, and MAD. Meanwhile, Figure 3 exhibits the scatter plot depicting data points and residual 
errors. Additionally, Figure 4 presents a plot comparing expected and experimental CIE values. 
 

Table 2. ML Model performances 
Model Training Testing 

R2 RMSE MAE MAD R2 RMSE MAE MAD 
Linear:         
Bayesian 0.089 7.64 6.76 6.02 0.107 7.73 6.87 6.03 
Lasso 0.112 7.27 6.16 5.45 0.096 7.84 6.92 6.29 
Ridge 0.136 7.06 6.03 5.78 0.121 7.35 6.71 6.03 
EN 0.152 6.94 5.98 5.02 0.134 7.16 6.35 5.57 
OLS 0.264 6.62 5.44 4.51 0.271 5.68 5.05 4.79 
Non-Linear:         
SVM 0.476 4.97 3.83 3.57 0.517 5.32 4.89 4.52 
KNN 0.901 2.43 2.13 2.03 0.884 2.79 2.56 2.31 
Neural Network:         
MLPNN 0.876 2.72 2.53 2.21 0.79 3.61 3.57 3.71 
Ensemble:         
RF 0.894 2.21 2.19 2.10 0.822 3.03 3.27 3.24 
GB 0.999 0.09 0.08 0.08 0.980 0.95 0.84 0.94 

 
 The performance of various ML models at both the training and testing phases, evaluated 
using multiple performance metrics such as R2, RMSE, MAE, and MAD, is delineated in Table 3. 
Linear models, namely Bayesian, Lasso, Ridge, EN, and OLS, exhibit unsatisfactory performance 
characterized by notably low R2 scores and relatively elevated errors (RMSE, MAE, MAD). 
Among these linear models, OLS stands out as the best performer. This subpar performance 
highlights its incongruity with the dataset employed, underscoring the incapacity of linear models 
to adequately capture the intricate relationships between features and targets, particularly in cases 
where these relationships manifest nonlinearly. The complexity inherent in these interactions often 
surpasses the linear models' ability to comprehend and encapsulate them effectively, rendering 
them ill-suited for the current predictive task.  
 Non-linear models such as SVM, KNN, and neural network models (MLPNN) demonstrate 
superior performance compared to linear models. These models exhibit a greater capacity to 
decipher intricate relationships between features and target variables, as denoted by their elevated 
R2 scores and diminished prediction errors (RMSE, MAE, MAD). Of particular note are the 
ensemble models, specifically GB and RF, which exhibit exceptional performance. In particular, 
GB distinguishes itself by demonstrating the highest R2 score, specifically 0.980, and the minimal 
incidence of prediction errors as reflected in the RMSE, MAE, and MAD values, namely 0.95, 
0.84, and 0.94, respectively. This substantiates the GB model's adeptness in managing intricate 
relationships and discerning nonlinear patterns within the dataset. Additionally, it underscores its 
capability to determine and utilize more pertinent features, further enhancing its predictive power 
and effectiveness. 
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 Based on the outcomes derived from this evaluation, it is evident that the GB model 
emerges as the most superior among the evaluated models in terms of performance. Its exceptional 
capability to navigate intricate relationships and discern pivotal features positions it as a leading 
choice for predictive tasks on the datasets under scrutiny. Moreover, when judiciously employed 
with parameter fine-tuning, its inherent regularization algorithm proves highly effective in 
counteracting concerns related to overfitting. The inherent robustness of the GB model lies in its 
adeptness at managing complex feature interactions and discerning more pertinent characteristics 
within the dataset. This attribute holds immense value, particularly in datasets characterized by 
many features. The GB model's proficiency in delineating these multifaceted relationships and 
salient features significantly contributed to its superior performance when juxtaposed against other 
models evaluated in this study. 
 

  
(a) 

  
(b) 

  
(c) 
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(d) 

Figure 3. Plots of data point scatter (left) and residual error (right) for (a) OLS, (b) MLPNN, (c) KNN, and 
(d) GB models. 

 
 The analysis of the distribution plot of data points and residual errors, as presented in 
Figure 3(a)-(d), supports the claim that the GB model emerges as the optimal choice. Scatter plots 
directly represent the correlation between the model's predicted values and the actual data values. 
Notably, within the scatter plot of the GB model in Figure 3(d), the data points closely align along 
the diagonal line, indicating a robust consistency between predictions and actual values, compared 
to OLS, MLPNN, and KNN models. Moreover, the residual error plot illustrates minimal 
dispersion of prediction errors, specifically, for GB with residual values evenly distributed around 
zero (Figure 3(d)), compared to the three other models. This reinforces the conclusion that the GB 
model demonstrates superior capabilities in navigating complex patterns and capturing nonlinear 
relationships within the data. As a result, it delivers enhanced performance compared to the other 
evaluated models. The visual evidence from the scatter plots reinforces the reliability and 
effectiveness of the GB model in accurately predicting data points and minimizing prediction 
errors. 
 

 
Figure 4. A plot depicting CIE values for the testing set across diverse models. 

 
 The alignment of the predicted CIE value pattern with the experimental CIE value pattern 
(depicted in black), as illustrated in Figure 4, provides compelling evidence for the superiority of 
the GB model (shown in green) over other models. This observation supports the conclusion that 
the GB model can generalize and accurately track trends aligning with experimental patterns. The 
visual comparison in Figure 4 reinforces the robust performance of the GB model, emphasizing its 
ability to capture and replicate the experimental CIE value pattern effectively. 
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Table 3. Comparison with relevant works 
Inhibitor Model R2 RMSE Ref. 

Pyridine-quinoline GA-ANN  - 16.74 [43] 

Pyridine-quinoline MLR  0.93 - [55] 

Pyridazine ANN  - 10.56 [56] 

Pyridazine ANN  0.90  - [57] 

Pyrimidine  RF  - 5.71 [39] 

Pyrimidine ANN  - 2.91 [58] 

Quinoxaline MLPNN  -  5.42 [59] 

Ionic liqui GB 0.98 0.95 This work 

 
Table 3 presents a fair comparison of various models from relevant work with the 

proposed GB model. The positioning of GB's performance concerning the predictive 
capacities of different models applied to multiple datasets containing corrosion inhibitors 
found in existing research is an intriguing observation. The dataset includes chemical 
compounds such as pyridine-quinoline, pyridazine, pyrimidine, and quinoxaline. R2 and 
RMSE serve as the primary evaluation metrics for the models employed in this 
investigation, encompassing various artificial neural networks (ANN), multilinear 
regression (MLR), and RF. The GB model demonstrates exceptional performance when 
applied to the (proposed) ionic liquid dataset. With an R2 of 0.98 and an extremely low 
RMSE of 0.95, the GB model exhibits remarkable accuracy in predicting the properties of 
ionic liquid substances. These results underscore the superior predictive ability of the GB 
model compared to other models on analogous datasets. With a very low RMSE value and 
an R2 value approaching 1, the GB model emerges as a robust predictor of the 
characteristics of ionic liquid substances. This emphasizes the significant potential of GB 
models in comprehending and forecasting the intricate chemical characteristics of 
substances like ionic liquids. 
 

 
Figure 5. Plot of bootstrap resampling results 

 
Predictive uncertainty analysis using a bootstrap resampling approach with 1000 

iterations on the Gradient Boosting model shows a 95% prediction interval for the CIE 
value on the test data. As shown in Figure X, this plot shows the model's predictive 



Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r 
 

Gradient Boosting-based Machine Learning for Prediction of Corrosion Inhibition ... (Aprilyani Nur Safitri) 

173 

uncertainty for CIE value, with the orange shaded area representing the confidence interval 
range. The result shows that despite the variation, the prediction remains stable with 
relatively small deviation, indicating a reliable model. 

Although the Gradient Boosting model used showed excellent performance on the 
test data, the small dataset size may limit the model's generalizability. Therefore, as part of 
future work, the dataset will be expanded by adding additional ionic liquid compounds 
collected from the literature and in-house DFT simulation results. This step will improve 
the model's robustness and ensure its predictive validity over a broader range of 
compounds. Additionally, the Koopman theorem-based approach is a simplification and 
may not be entirely accurate for all ionic liquid compounds. However, since this approach 
offers significant computational efficiency, it is an initial estimate for developing 
predictive models. To improve the accuracy of the forecast, future work is planned to 
validate the results based on ∆SCF or other high-order DFT methods on some 
representative compounds. This validation will help evaluate how far the Koopman 
approach deviates and whether systematic corrections or a complete method switch are 
needed to develop future predictive models. 
 
4. CONCLUSION 

This research explores the potential for corrosion inhibition of ionic liquid compounds 
through a QSPR-based machine learning predictive model approach that utilizes DFT calculations. 
In particular, the GB model emerged as the most appropriate predictor, showing excellent accuracy 
with a high R2 value of 0.98. Apart from that, the RMSE, MAE, and MAD values are low, namely 
0.95, 0.84, and 0.94, respectively. This approach has proven invaluable by integrating DFT 
simulations into the data set updating process, facilitated by machine learning to identify new 
chemicals. The broader implication is the continuous refinement of data relating to the inhibitory 
impact of ionic liquid compounds on corrosion. 
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