
International Journal of Advances in Data and Information Systems 
Vol. 6, No. 1, April 2025, pp. 90~106 
ISSN: 2721-3056, DOI: 10.59395/ijadis.v6i1.1368  r  90 

  
Predicting Software Defects at Package Level in Java 

Project Using Stacking of Ensemble Learning Approach 
 

Nabila Athifah Zahra1, Amalia Anjani Arifiyanti2, Dhian Satria Yudha Kartika3 
1,2,3 Department of Information System, Veteran National Development University, East Java, Indonesia 

 
 

 Article Info    ABSTRACT  

Article history:  Compared to manual and automated testing, AI-driven testing 
provides a more intelligent approach by enabling earlier prediction of software 
defects and improving testing efficiency. This research focuses on predicting 
software defects by analizing CK software metrics using classification 
algorithms. A total of 8924 data points were collected from five open-source Java 
projects on Github. Due to class imbalanced, undersampling was applied during 
preprocessing along with data cleaning and normalization. Tthe final dataset is 
consisting of 1314 instances (746 clean and 568 buggy). The predictive  model is 
developed in two stages: base learner (level-0) using AdaBoost, Random Forest 
RF), Extra Trees (ET), Gradient Boosting (GB), Histogram-based Gradient 
Boosting (HGB), XGBoost (XGB), and CatBoost (CAT) algorithms, and meta-
learner (level-1) that optimizes the results using ensemble stacking techniques. 
The stacking model achieved ROC-AUC score of 0.8575, outperforming all 
individual classifiers and effectively distinguishing defective from non-defective 
software components. The comparison of performance improvements between 
the base model (tree-based ensemble) and stacking was statistically validated 
using paired t-tests. All p-values were below 0.05, confirming the significance of 
Stacking’s superior performance, with the largest gain observed against Gradient 
Boosting (+0.0411, p = 0.0030). The confussion matrix of stacking model is the 
most optimal model because it has high of True Positive and True Negative, while  
False Positive and False Negative values are relatively low. These findings affirm 
that ensemble stacking yields a more robust and balanced classification system, 
enhancing defect prediction accuracy and enabling earlier issue detection in the 
Software Development Life Cycle (SDLC).  
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1. INTRODUCTION 

Software testing is one of the essential phases of the software development life cycle (SDLC) 
stage. The quality and stability of the software is a crucial thing that needs to be considered in software 
development because, from this stage, it will be known about errors, defects, or vulnerabilities of a 
system [1]. Software testing has stages of the process that are carried out systematically and planned, 
otherwise known as the Software Testing Life Cycle (STLC). STLC refers to specific stages ranging from 
requirements analysis, test planning, test case generation, test environment setup, and test 
implementation [2]. In the testing phase, the tester will observe the running of the system with the aim 
of finding the problems, failures or errors. Failure is defined when the running system is different from 
the expected conditions based on the requirements of a system [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Several types of software testing are most often used namely functional and structural testing. 
Functional testing, also known as black-box testing, is testing the functional features by observing the 
input and output results of the software without knowing the structure of the software code. Meanwhile, 
structural testing, also known as white-box testing, is software testing that analyzes and examines 
internal structures, such as code implementation, data flow, and possible failures in software. Software 
testing is very important because it not only has an impact on performance but also on the company's 
reputation for financial losses[4]. 

One of Software Bug incident happened to the Uber app in France. The bug caused customer 
trip data to be tracked even though they had left the application. This issue led to a 45-million-dollar 
lawsuit against the company. In the context of software development, the cost of bug fixing often 
increases exponentially depending on what phase of development the bug is found. According to the 
Cost of Quality principle, finding and fixing a bug in the production or post-release phase requires 30-
100x more resources than if the bug was identified pre-release. In 2018, software company Tricentis 
claimed that 606 reports of software bugs caused the company to lose 1.7 million dollars [5]. The 
incident also caused 5-20% of users to lose trust in the company [6]. These incidents imply that software 
defects will cause losses both financially and reputationally. Therefore, the software testing phase is 
considered a crucial and very important phase. 

There are several types of testing, one of which is definitely used is manual functional testing. 
Manual software testing is considered to require more time and resources, and there is still a possibility 
of human error, so the results are less efficient. There is a need to streamline the testing process by 
applying automation testing, machine learning (ML), and artificial intelligence (AI) [1]. Machine 
Learning is a part of AI that is able to learn data and improve performance without explicit 
programming. This is the foundation of AI-driven. The use of AI in software testing makes software 
more reliable, efficient and effective by utilizing automation and machine learning [7]. 

Currently, research on AI-driven testing is growing in both academia and industry. Bug 
prediction approaches are starting to focus on prediction rather than detection. This prediction approach 
aims to identify potential bugs in the early stages of the SDLC phase, in contrast to traditional bug 
detection, which is usually done after bugs appear or often uses automated testing tools. With the model's 
capability to predict software defects, testers can more efficiently manage resources, prioritize testing, 
and improve the quality of products [1]. With software defect prediction, testing resources can be 
optimized by directing focus to bug-prone areas. This approach will minimize the cost of software repair 
and modification after release. 

Several studies on Software Defect Prediction are relevant to this research. One of them is 
research titled Software Defect Prediction Using Ensemble Learning: An ANP-Based Evaluation 
Method, which discusses the prediction of software defects using an ensemble learning approach [8]. 
This research aims to evaluate the performance of classification algorithms in Software Defect 
Prediction (SDP) by comparing the performance of single classifiers (SMO, MLP, KNN, and Decision 
Tree) with Ensemble Methods (Bagging, Boosting, Stacking, and Voting). This research uses 11 datasets 
of Java and C++ software defect projects taken from public repositories. This data includes software 
analytics matrices such as complexity and code size. 

One of the machine learning model approaches used to predict software defects is 
classification or egression using software code metrics. This approach aims to identify software modules 
that are prone to errors or bugs based on the analysis of source code metrics. Software metrics generated 
from source code extraction are used to build predictive models. Software metrics that are commonly 
used in predicting software defects are McCabe Metrics, Halstead Metrics, and Static Code Metrics [9]. 
This approach is also done using Chidamber and Kemerer Metrics or CK matrix to build a prediction 
model for software bugs [5].         

Several studies that discuss software defect prediction use Java-based projects as research 
objects because they have OOP-based software metrics. Java is an object-oriented programming 
language that has standard development documentation that makes it easy to use. Java has the scalability 
of a software solution that is able to provide strong performance and has scalability, which is very 
important for companies.   
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Table 1. The Popularity of Java Project 
Nov 2024  Nov 2023    Change  Programming Language   Ratings   Change 

1 1  Python 22.85% +8.69% 
2 3 Ù C++ 10.64% +0.29% 
3 4 Ù Java 9.60% +1.26% 
4 2 Ú C 9.01% -2.76% 
5 5  C# 4.96% -2.67% 
6 6  JavaScript 3.71% +0.50% 
7 13 Ù Go 2.35% +1.16% 
8 12 Ù Fortran 1.97% +0.67% 
9 8 Ú Visual Basic 1.95% -0.15% 

10 9 Ú SQL 1.94% +0.05% 

 
Java's popularity is evidenced by the fact that 90% of Fortune companies use Java [10]. Based 

on a survey conducted by TIOBE Programming Community Index in 2024, which is shown in Figure 
1, Java is ranked 3rd in the most popular programming language with a rating of 9.6%. The popularity 
of Java in November 2024 increased by 1.26% compared to November 2023 [11]. According to a survey 
conducted by Eclipse in 2019, Java became the most important programming language in the realm of 
Artificial Intelligence (AI), Internet of Things (IoT), and big data. In the field of AI, Java is used for the 
development of Machine Learning solutions, Neural Networks, genetic programming, and multi-robot 
systems. Therefore, in this research, Java is chosen as the object of focus because it has a high level of 
use or adoption in the enterprise. Java also has historical relevance in previous research on software 
defects. By using Java-based projects as the object, this research will utilize Object Oriented 
Programming-based software metrics in Java to produce a more predictive model of software defects. 

Based on previous research, one of the methods used to predict software defects is using the 
ensemble method. The ensemble learning method, or the combination of several base models, has 
proven to be able to improve the accuracy of the model compared to approaches that only use one 
algorithm (Single Classifier) [12]. One of the ensemble learning techniques used in this research is the 
Stacking technique. This method combines predictions from several base models (base classifiers) to 
produce models that have a higher level of accuracy. An ensemble approach to predicting software 
defects has also been made using 10 NASA MDP public datasets and using 13 different performance 
measures [13]. The ensemble method used in the study was stacking, which resulted in an accuracy of 
92.53%. The ensemble method approach for predicting software defects has also been carried out using 
Random Forest, Extremely Randomized Trees and XGBoost algorithms as a baseline classifier and 
using ensemble techniques in the form of a Stacking Classifier (STC) to produce the best accuracy rate 
[14]. When compared with other ensemble methods, the stacking method is considered superior because 
of its ability to combine the strengths of various models by prediction results and training meta-learner 
models to optimize the final prediction. 

Based on the background description above, it is found that software defect prediction research 
is urgently needed to minimize the loss or impact of the discovery of post-release software defects. By 
predicting bugs before the software is released, the cost of bug fixing will also be reduced. Moreover, 
with the existence of software analytics, this technique can be implemented in various object-oriented 
programming-based project development. Based on this background, the aim of this research is to 
determine the prediction of software defects using the ensemble learning method. Seven algorithms will 
be used to create a base model in this study, including Adaptive Boosting, Random Forest, Extra Trees, 
Gradient Boosting, Histogram Gradient Boosting, XGBoost, and Categorical Boosting. The ensemble 
stacking technique was also used to make the model's final prediction. The output produced in this is a 
machine learning model to predict software defects. 

 
2. RESEARCH METHODOLOGY 

Based on Figure 2, this research begins with collecting software defect data. The data collected is 
historical data related to Java project software defects obtained from open source projects on the Github 
repository platform and the results of extracting software metrics from the project. After the data is collected, 
the next step is to pre-process the data to clean, normalize, and transform the data so that it is ready to be 
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used in model training [15]. Next, the classification stage is carried out, the training model is trained through 
two levels, the base learner (level-0) and the learner model (level-1). In the base learner training, tree-based 
ensemble algorithms used include AdaBoost, Random Forest (RF), Extra Trees (ET), Gradient Boosting 
(GB), Histogram-based Gradient Boosting (HGB), XGBoost (XGB), and CatBoost (CAT) [12]. During data 
training, hyperparameter optimization is also performed to optimize the value of the base learner model . 
 

 
Figure 2. Flow of Research Methodology 

 
Furthermore, the optimized model will be used at Level-1 as input for the Stacking Ensemble 

process. At this stage, several basic models are combined to produce the final prediction using the stacking 
ensemble technique with the Logistic Regression algorithm as a meta-classifier to get the final prediction 
value [16]. In the testing layer, the performance of the trained model will be tested. Testing is done using 
testing data as input for the trained model.  

Furthermore, the prediction process is carried out to validate the performance of the model with 
the final result in the form of classification between defective and undefective. The output of the testing layer 
ensures that the model performs as expected on test data that has never been seen before. Once the model is 
trained, performance evaluation is performed to measure the performance of the model with relevant 
evaluation metrics, such as accuracy, precision, roc_auc, f1score, and recall [5]. 
1.1 Data Collection 

The data collection process begins with the selection of open source Java projects with the 
provision of having more than 1000 commits [17]. The project must also have documentation or bug history 
on its modules because it will be used in the data labeling process. Furthermore, after selecting the project, 
software metrics extraction will be carried out using the CK Metrics Calculator. CK Metrics Calculator is a 
software analytics tool specifically for projects based on Object Oriented Programming (OOP) Java 
language[18]. This tool will calculate the code matrix at the package level in Java projects using static 
analysis, so it does not require compiled code [18]. 

The resulting analysis coverage is CK Metrics (Chidamber and Kemerer Metrics Suite) which 
consists of class-level metrics such as Coupling Between Objects (CBO), Depth of Inheritance Tree (DIT), 
and Number of Methods (NOM) [19]. There are also method-level metrics such as Cyclomatic Complexity 
and Line of Codes (LOC). The result of the extraction process is raw software metrics data. This data is 
quantitative information that reflects the quality and characteristics of the software project being analyzed. 
The dataset used for the training data of the software defect prediction model in this research is software 
analysis matrix data from java-language open source projects obtained from public repositories, namely 
Github. In this research, the dataset used comes from 5 Java-language open source projects that have bug 
trackers docummentation, in Github [20]. The data shows the results of softwaare metrics extraction from 5 
open-source Java projects, namely JFreeChart, Closure-Compiler, Commons-Math, Commons Lang, and 
Mockito, with a total of 8924 packages.  
1.2 Data Preprocessing 

In the data pre-processing stage, several steps must be taken to manage the results of data collection. 
The process starts with software metrics feature selection, where relevant features are selected according to the 
purpose of the analysis, such as class, method, or code complexity metrics [15]. Next, data cleaning is performed 
to ensure the quality of the dataset, including removing duplicate data, handling missing values, and correcting 
errors. After that, in the data acquisition stage, the data is divided into training data and testing data. The process 
continues with data balance analysis, which aims to check the distribution of data for balance, thus avoiding 
bias and ensuring representative analysis results. 
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1.3 Software Metrics Feature Selection 
Software metrics feature selection is a crucial step in the software defect dataset creation process. 

The goal is to identify important attributes relevant to the analysis needs while filtering out unnecessary 
attributes from the raw data [22]. This step helps to increase the efficiency of the analysis and reduce the 
complexity of the processed data. In the raw data, some attributes are irrelevant or do not contribute 
significantly to the identification of software defects. Therefore, the selected features need to be aligned with 
research or recognized standards. In this context, feature selection is done by referring to CK metrics 
(Chidamber & Kemerer metrics) [5]. CK metrics include important metrics such as Coupling Between 
Objects (CBO), Depth of Inheritance Tree (DIT), Lack of Cohesion of Methods (LCOM), and others, which 
are proven to provide significant insights into code quality and potential defects. This research shows that 
the use of CK metrics can help identify patterns in code that are potential sources of bugs while improving 
the accuracy of defect prediction. Feature selection not only serves to improve efficiency but also has a 
significant impact on the quality of analysis results. For example, research shows that datasets focused on 
important attributes have a higher prediction accuracy rate than datasets that use all attributes without 
selection [5]. 
1.3.1 Data Splitting 

The data splitting scheme in this study divides the dataset into two parts, namely 80% for the 
training process and 20% for test data (holdout). The training dataset (X_train, y_train) will be divided into 
two parts, namely (X_train_base, y_train_base) as much as 50% of the training set to train the base model. 
Moreover, (X_train_meta, y_train_meta) as much as 50% also to train the meta-model [16]. The first division 
aims to set aside holdout data for final validation, while the second division aims to create the base model 
and meta-model in the stacking ensemble 
1.3.2 Data Cleaning 

Data cleaning is an important step to ensure the quality of the dataset to be used in software metrics 
analysis [23]. At this stage, the collected raw data is thoroughly examined to identify and address issues such 
as duplicate data, missing values, data outliers, and errors in data format. Data cleaning aims to improve the 
accuracy of the analysis results by removing elements that may negatively affect the results.  
1.3.3 Data Balance Analysis 

Data balance analysis aims to evaluate the distribution of classes in a dataset, such as the ratio 
between buggy and non-buggy data. Unbalanced data distribution can cause the analysis model to be biased 
towards the majority class, thus reducing the predictive ability of the minority class. This imbalance often 
occurs in classification problems where one class has more samples than the other. Some techniques used to 
deal with this problem are oversampling the minority class or undersampling the majority class[9]. 
1.4 Data Labeling Pipelines 

The labeling pipeline mechanism focuses on creating a reliable dataset of real bugs for Java 
programs by identifying actual bug fixes from version control history [21]. The process begins by scanning 
the version control logs of open-source Java projects to identify commits that fix bugs. This identification is 
usually done by checking whether a commit references a bug ID from a bug tracker or if the bug tracker links 
back to a commit. Only commits that involve changes to the source code (excluding documentation or 
configuration files) are considered valid bug fixes.  
1.5 Base Model Training 

In this stage, the dataset that has been divided into training data will be trained using the tree-
based ensemble algorithm. Tree-based ensembles are one of the methods in ensemble learning that combines 
several decision trees to improve prediction performance. This research uses tree-based ensemble algorithms 
including AdaBoost, Random Forest (RF), Extra Trees (ET), Gradient Boosting (GB), Histogram-based 
Gradient Boosting (HGB), XGBoost (XGB), and CatBoost (CAT) [12]. This method has been widely used 
in software defect prediction due to its ability to handle complex data and provide results that can be 
interpreted well. The algorithm method for creating a baseline model for predicting software defects is based 
on the references in the following table. 

Each of these algorithms has a different approach to model building, with the main goal of 
reducing bias and variance in predictions. For example, AdaBoost prioritizes improving accuracy by 
giving more weight to data that is difficult to predict. Meanwhile, Random Forest and Extra Trees use a 
random feature selection approach to build a variety of more stable decision trees.  addition, Gradient 
Boosting and XGBoost focus on incrementally improving the model by minimizing previous prediction 
errors. The model training process is done by parameter tuning the various hyperparameters for each 
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algorithm, in order to find the best combination that improves model performance on the data used [12]. 
 

Table 2. Reference of Tree-Based Ensemble Algorithm 
Algorithm Reference 
AdaBoost [12]; [24]; [25] 

Random Forest (RF) [14]; [12]; [15]; [24] 
Extre Trees (ET) [12]; [14] 

Gradient Boosting (GB) [12]; [25] 
Histogram-based Gradient Boosting (HGB) [12]; [26] 

XGBoost (XGB) [14]; 12]; [19]; [27] 
CatBoost (CAT) [12]; [24] 

 
1.5.1 Random Forest 

Random Forest is part of the ensemble learning algorithm, which is an algorithm that utilizes 
many models to get more accurate prediction results than just using decision trees [23]. The main 
concept of naming "Random" in Random Foret is that sampling is done randomly from the training data 
set and feature subsets are always considered when separating nodes. For example, if there are p total 
features then only m features are randomly selected for data splitting. 
1.5.2 Extra Trees 

Extra Trees (ET) is an algorithm that is almost similar to the Random Forest algorithm, which 
both create decision trees to make the final prediction by combining the results of all decision trees. 
What is different between ExtraTrees and Random Forest is that each decision tree is trained using the 
entire dataset and nodes or features are selected randomly [12]. 
1.5.3 Adaptive Boosting 

AdaBoost or Adaptive Boosting is a classification algorithm that works iteratively by training 
weak learners such as decision trees on a dataset and weighting each training instance based on its 
classification. Instances that are difficult to classify will be the focus of greater attention in subsequent 
iterations. The final prediction is calculated by integrating the results of all base classifiers using a 
weighted majority vote approach, where each base classifier will contribute based on its performance. 
The advantage of the AdaBoost algorithms that it has the ability to adaptively and iteratively correct 
classification errors so that it can produce a more accurate model than just one base model [12]. 
1.5.4 Gradient Boosting 

Gradient Boosting (GB) is a generalization of the AdaBoost ensemble method that allows the 
use of various loss functions. Unlike AdaBoost, GB utilizes the gradient to build a new base classifier 
instead of the weight of the misclassified instances [25]. Although GB improves efficiency in building 
the base classifier, it has the disadvantage sub-optimal memory usage and processing time. 
1.5.5 Histogram Gradient Boosting 

Histogram-Based Gradient Boosting (HGB) is an ensemble boosting method that uses feature 
histograms to select the best split efficiently and reliably. Compared to Gradient Boosting (GB), HGB 
has an advantage in terms of processing speed, making it more optimal for handling large and complex 
datasets [26]. 
1.5.6 XGBoost 

XGBoost (Extreme Gradient Boosting) is a machine learning ensemble algorithm designed to 
improve the performance of gradient-boosted decision trees algorithms through a faster, parallel, and 
distributed approach. Through model tuning, parameter regulation, and memory usage efficiency, 
XGBoost can significantly reduce computation time. Essentially, XGBoost is used to minimize the loss 
function by adding a weak classifier [28]. XGBoost offers additional capabilities such as handling data 
with missing values (Sparse Aware), parallel structure to improve performance, and the ability to work 
with additional data on the trained model [29]. 
1.5.7 Categorical Boosting 

CatBoost (Categorical Boosting) is a meta model for classification. This algorithm has two 
main characteristics. First, CatBoost effectively handles categorical features using a one-hot encoding 
technique. Second, it uses oblivious decision trees as the base classifier, where each level of the tree 
uses the same splitting criteria across nodes. This symmetrical tree structure helps minimize overfitting 
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and speeds up training time. CatBoost has a reliable performance in performing classification compared 
to other algorithms [25]. 
1.5.8 Stacking Ensemble 

Stacking is a heterogeneous ensemble model that combines predictions from multiple base 
classifiers through a meta-classifier to produce a final prediction model. The training dataset is divided 
into two parts: one for training the base classifier and another for training the meta-classifier. Each base 
classifier is trained using the entire training dataset with different learning algorithms. The prediction 
results of the base classifier are used as input to train the meta-classifier which will generate the final 
prediction by combining the outputs of all the base classifiers. The stacking algorithm consists of three 
main steps, namely base classifier training, new dataset creation, and meta-classifier training [28]. This 
approach allows stacking to utilize the combined power of various learning algorithms to improve the 
accuracy of the prediction model [8]. The following is the formula used in the stacking technique shown 
in formula (1). 

 
 𝒴!"#$ = [𝒴%,			𝒴(,… . . 𝒴)*%]	 (1) 
 Description: 

𝒴𝑏𝑎𝑠𝑒=final	model	
𝒴𝑖−𝑛=value	of	each	model	

 

 
1.6 Model Performance Evaluation 

After all the model training is completed and the accuracy and performance values of the 
ensemble learning method are obtained, the next step is to evaluate the model. Several evaluations were 
conducted to assess the performance of the ensemble prediction model, including accuracy, precision, 
Recall, f1score, and roc_auc score . Accuracy (2) is calculated as the ratio of the number of correct 
predictions to the total data, but it is less effective if the classes are not balanced. Precision (3) measures 
the proportion of correct positive predictions out of all positive predictions, while Recall (4) measures 
how many positive instances were successfully identified out of the total true positive instances. F1 
Score (5) which is the harmonic mean between Precision and Recall, is used to balance the error between 
False Positive (FP) and False Negative (FN), especially in unbalanced datasets. ROC-AUC (6) is used 
to assess the model's ability to distinguish between positive and negative classes by calculating the area 
under the ROC curve. The higher the AUC value (close to 1), the better the model is at distinguishing 
classes, while a value of 0.5 indicates the model's performance is no better than a random guess [5]. The 
following is the formula for calculating the model performance evaluation. 

 
 

Accuracy  = !"#!$	
!$#!"#&$#&"

 𝑥100% 
(2) 

 
Precision  = !$	

!$#&$
 𝑥100% 

(3) 

 
Recall   = !$	

!$#&"
 𝑥100% 

(4) 

 
F1 Score  = 2	𝑥 '()*+,+-.	/	()*011

'()*+,+-.#()*011
 𝑥	100% 

ROC- AUC  =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)	𝑑	𝐹𝑃𝑅2
3  

                                                       =  ∫ 𝑇𝑃𝑅/𝐹𝑃𝑅42(𝑥)0𝑑𝑥2
3  

(5) 
 
 
 
(6) 

Note: 𝑇𝑃 = 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑇𝑁 = 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,	 
𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒, 𝐹𝑃𝑅 = 𝐹𝑙𝑎𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 

 

 
 

3. RESULTS AND DISCUSSION 
The results and discussion chapter will discuss the implementation of the program based on 

the stages of the research methodology, starting from data collection, data preprocessing, prediction 
model building, to its implementation. 
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3.1. Data Collection 
Data collection is done by exploring open-source Java projects in the public repository, 

GitHub. There are several prerequisites for choosing a Java project that will be used as a dataset, which 
must have documentation and bug history in its modules. Through the bug history in the project modules, 
the data labelling process will be carried out in each module into the buggy and clean classes. In addition, 
the project must also have more than 1000 commit. Extraction or retrieval of software metrics data on 
the selected project is done through the CK Metrics Calculator tool developed by Mauricio[18]. This 
tool can extract a Java project into software metrics attributes. There are three architectural components 
used in this tool, including CK, runner, and MetricsExecutor. CK is the main component that manages 
the metrics collection process, starting from metrics initialization, file division based on memory 
capacity, managing execution in each directory, and optimizing Java file analysis. The software metrics 
data is in numeric form with the number as shown in table 3 below. 

 
Table 3. Software metrics collection results 

Project Name Total Commit Total Package  

Jfreechart 4.226           1048 
   Closure-compiler 19.514                       2844 
    Commons-math 7.229           1846 
     Commons-lang 8.419           1097 

Mockito 6.237           2089 
 Total           8924 

 
3.2. Data Preprocessing 

Before training the data, pre-processing will be carried out on the dataset collected in the 
previous stage. This pre-processing stage includes feature selection, data splitting, data balance analysis, 
and missing value checking. After analyzing the data balance, it was found that the distribution of the 
dataset was not balanced. Data imbalance between the two classes will allow overfitting to occur. 
Therefore, to overcome the data imbalance, several imbalanced data handling scenarios are carried out. 
There are several scenarios of handling imbalanced datasets used in the research including SMOTE 
(Synthetic Minority Oversampling Techniques), SMOTE-Tomek Links, and stratified undersampling 
techniques. The results when training the data show that the stratified undersampling technique produces 
a more optimal evaluation performance value compared to the other techniques. After stratified 
undersampling the data, the amount of new data obtained is 1314, with the distribution of clean classes 
reaching 746 and buggy classes totaling 568. 

 
3.3. Data Labeling 

Table 4. The Results of Labeling Software Metrics Dataset 
Project Name Number of Clean Number of Bugs 

Jfreechart                80                 27 
   Closure-compiler 194                  369 
    Commons-math               140                            66 
     Commons-lang                81                            63 

Mockito               251                 43 
Total               746                  568 

 
Based on table 3 above, presents the outcome of labeling process applied accros 5 Java open 

sources projects choosen in previous section. This step of labeling pipelines is  identifying bug-fixing 
commits by mining commit logs. Each project listed such as Jfreechart, Closure-compiler, etc underwent 
the systematic process of identifying bug fixing commits. The labeling pipeline successfully 
differentiated between of version code that are clean and those labeld as containing real bugs, which are 
associated with valid bug-fixing patches. For instance, the Closure-compiler project shows the highest 
number of identified bugs (369), which  suggest  that the  version control and bug tracking records for 
this project are rich and well-maintened. Although, a project like Jfreechart with only 27 labeeled bugs, 
might have had fewer explicit bug references or less testable commit history.  
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3.4. Data Exploration  
  This research applies the Exploratory Data Analysis methodology to gain a deeper 

understanding of the dataset associated with the variables that determine whether or not a Java package 
project has defects. This stage is very important to identify patterns, correlations, and characteristics of 
a variable used in code quality analysis. This research uses multivariate correlation analysis to 
understand the relationship between variables that affect the complexity and potential defects in the 
code. Table 3 shows the statistical analysis results of each variable. 

 
Table 5. Quantitative Analysis of Software Metrics Variables 

Variable Min Mean Max 
Cbo 0.00 4.88 1334.00 
Dit 1.00 1.48 39.00 

fanin 0.00 1.98 405.00 
Fanout 0.00 4.89 134.00 
Lcom 0.00+ee 4.41 1.49 
Noc 0.00 0.16 226.00 
Loc 1.00 77.88 5584.00 
Rfc 0.00 11.66 545.00 

Wmc 0.00 15.62 1758.00 
totalMethodsQty 0.00 8.45 1733.00 

protectedMethodsQtys 0.00 1.15 366.00 
publicMethodsQty 0.00 5.65 1726.00 
privateMethodsQty 0.00 0.84 233.00 

finalFieldsQty 0.00 0.90 143.00 
protectedFieldsQty 0.00 0.07 54.00 

publicFieldsQty 0.00 0.20 189.00 
privateFieldsQty 0.00 1.35 142.00 

bugs 0.00 0.06 1.00 
 
An explorative analysis of the software metrics dataset revealed various characteristics that 

affect code complexity and quality. One of the main aspects of concern is Coupling Between Objects 
(CBO), which has an average value of 4.88 with a range up to 1334.00. This high maximum value 
indicates that some classes are highly dependent on other classes, which can increase system complexity 
and make code maintenance difficult. In addition, the Depth of Inheritance Tree (DIT) has an average 
of 1.48, with some classes reaching a depth of up to 39.00. Inheritance hierarchies that are too deep can 
complicate understanding the code structure and make debugging and testing difficult. In addition to the 
inheritance and dependency factors between classes, the analysis also showed that fan-in and fan-out 
have a major influence on the connectedness between system components. An average fan-in of 1.98 
indicates that methods in a class tend to be called by several other classes, while a fan-out that has an 
average of 4.89 and a maximum of 134.00 indicates that a class is highly dependent on many other 
classes. This extensive dependency increases the risk of code instability, as a small change to one class 
can have a significant impact on other components it is associated with. 

In addition, the lack of cohesiveness of methods (LCOM) metric, with an average of 4.41, 
indicates that some classes have methods that are not very cohesive, meaning they work on different 
parts of the class attributes. Low cohesion may indicate the need for refactoring to improve code 
modularity. On the other hand, the number of lines of code in a class (LOC) varies from 1 to 5584, with 
an average of 77.88, indicating that most classes are relatively small in size. However, some classes are 
too large, which may hinder code readability and maintainability. Other complexity metrics, such as 
Weighted Methods per Class (WMC), show that some classes have a very high number of methods, with 
a maximum value of 1758.00 and an average of 15.62. The more methods in a class, the greater the 
chance of errors due to increased complexity. This case is reinforced by the accessibility pattern of 
methods in the class, where public methods (publicMethodsQty) have the highest average of 5.65, while 
private methods (privateMethodsQty) are only about 0.84.  

Classes that expose too many public methods can be more vulnerable to external changes and 
increase the risk of errors. Analysis of the bugs variable shows that most of the classes in the dataset do 
not have bugs, but there is a small percentage of classes that are prone to errors. This analysis indicates 
that classes with high complexity, as indicated by high Cbo, Wmc, and fan-out, tend to have a greater 
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risk of containing bugs. By understanding this pattern, the next step is to identify complexity reduction 
strategies, such as code refactoring, increasing modularity, and managing dependencies between classes 
to improve overall software quality. 
3.5. Correlation and Significance 

The correlation matrix in Figure 3 below measures how strong the relationship is between two 
variables. The correlation matrix ranges from -1 to 1. A positive value indicates a direct relationship 
when one variable increases the other also increases. Whereas a negative value indicates that there is an 
opposite relationship when one variable increases, the other will accordingly. From the matrix, it can be 
seen that some matrices have a high correlation value with each other. For example, publicMethodsQty 
has a very high correlation with privateMethodsQty (0.94), which indicates that the number of public 
and private methods tend to increase simultaneously within a class. Similarly, totalMethodsQty has a 
high correlation with protectedMethodsQty and privateMethodsQty, which makes sense since total 
methods are the sum of different types of methods in a class. 

 

 
Figure 3. Inter-variable Correlation Matrix 

 
Metrics such as cbo (Coupling Between Objects) and wmc (Weighted Methods per Class) also 

show a fairly high correlation (0.76), indicating that classes with high complexity tend to be more 
connected to other classes.  In addition, lcom (Lack of Cohesion of Methods) has a positive correlation 
with fanout and fanin, meaning classes with less cohesive methods often have more dependencies on 
other classes. Meanwhile, the bugs variable has low correlations with most code metrics, although there 
is a slight relationship with wmc (0.16) and cbo (0.12), which could suggest that the more complex and 
connected a class is, the more likely it is to have bugs. Overall, these correlations provide insight into 
how code characteristics relate to each other. This can help developers understand how factors such as 
complexity, cohesion, and number of methods can affect code quality and the potential for bugs. 
3.6. Model Development 

This research develops a prediction model to predict software defects in Java package projects. 
The  ensemble model build with tree-based algorithm as the base model, including Adaptive Boosting, 
Random Forest, Extratrees, Histogram XGBoost, and Categorical Boosting. Furthermore, the results of 
the data base model training will be integrated through ensemble stacking techniques with Random 
Forest  Regressor as a meta model to optimize prediction quality. This approach is expected to be able 
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to optimize the accuracy, precision, roc_auc, f1score and recall values which become the matrix for 
determining model performance. 
3.7. Random Forest 

Random Forest uses hyperparameters that are tuned to achieve a balance between accuracy 
and generalization. n_estimators=40 ensures a sufficient number of trees to improve prediction stability 
without excessive computational cost. max_depth=4 limits the depth of the tree to avoid overcomplexity 
and overfitting. min_samples_leaf=5 prevents the tree from being too specific to the training data. 
criterion='gini' is used to measure the impurity of nodes in optimal data splitting. random_state=1 
ensures consistent and reproducible results. This implementation of hyperparameter optimization makes 
Random Forest more reliable in handling data variability with stable performance [30]. 
3.8. Extra Trees 

The Extra Trees algorithm uses hyperparameters that are tuned for a balance between accuracy 
and efficiency. n_estimators=30 ensures prediction stability without excessive computational cost. 
max_depth=8 limits the depth of the tree to prevent overfitting, while min_samples_leaf=4 prevents too 
specific splits. criterion='gini' is used for effective data splitting, and implementing gini for the criterion 
paramater. This combination makes Extra Trees more resilient to data variance while maintaining high 
accuracy. 
3.9. Adaptive Boosting 

AdaBoost or Adaptive Boosting is a classification algorithm that works iteratively by training 
weak learners such as decision trees on a dataset and giving weight to each training instance based on 
its  classification. In the Adaptive Boosting algorithm, the hyperparameter tuning process is carried out 
using five parameters including estimator = AdaBoostClassifier with n_estimators = 50 and 
learning_rate =0. 1.  
3.10. Gradient Boosting  

Gradient Boosting uses several hyperparameters that have been adjusted to specific values to 
achieve a balance between bias and variance in the model. n_estimators=100 was chosen because this 
number is sufficient to capture patterns in the data without causing excessive overfitting. If it is too 
large, the model can become too complex and lose its generalization ability. learning_rate=0.01 was 
used because this value provides a good balance between stable convergence and learning speed. 
min_samples_leaf=5 was chosen to ensure that each leaf of the tree has at least two samples, which 
helps reduce the chance of the model overfitting the training data. max_depth=3 was used as this depth 
is sufficient to capture non-linear patterns in the data without making the model too complex. 
loss='exponential' was chosen to give more weight to hard-to-classify observations, similar to the 
approach used in Adaboost, so that the model focuses more on hard-to-correct errors.  
3.11. Histogram Gradient Boosting 

Histogram Gradient Boosting is a boosting algorithm that groups data into histograms to 
improve computational efficiency, especially on large datasets. In the hyperparameter tuning process, 
several key parameters are used to control the performance of the model. max_iter=50 specifies the 
maximum number of iterations or number of trees to be created, which affects the extent to which the 
model learns from the data without causing overfitting. learning_rate=0.01 controls the speed, where 
larger values speed up convergence but can sacrifice accuracy if too high. min_samples_leaf=5 sets the 
minimum number of samples that should be present in each leaf of the decision tree, which helps reduce 
overfitting by ensuring that each data division has enough observations. max_depth=3 sets the maximum 
depth of the decision tree, which affects the complexity of the model as well as the balance between bias 
and variance.  
3.12. XGBoost 

In the hyperparameter tuning process, several key parameters are used to optimize the model. 
estimators=50 sets the number of trees in boosting, where a larger number can improve accuracy but 
also increases the risk of overfitting. max_depth=4sets the maximum depth of the decision tree, which 
affects the complexity of the model as well as the balance between bias and variance. learning_rate=0.01 
controls the speed, where larger values speed up convergence but can sacrifice accuracy if too high. 
With this combination of parameters, XGBoost is able to provide strong performance with a good 
balance between speed and accuracy in the machine learning process. 
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3.13. Categorical Boosting 
CatBoost is a gradient boosting algorithm optimized to handle categorical features efficiently. 

In the hyperparameter tuning process, several key parameters are used to improve model performance. 
n_estimators=50 determines the number of trees used in boosting, this value is optimal because the time 
consumption during training is very low. loss_function='Logloss' is used for binary classification by 
measuring the probability of prediction error. learning_rate=0.1 controls the learning speed, with higher 
values speeding up convergence but may miss the optimal solution. depth=5 determines the maximum 
depth of the decision tree, which affects the complexity of the model. min_data_in_leaf=1 sets the 
minimum number of samples in each leaf to prevent overfitting. random_seed=1 ensures consistent and 
reproducible results. Finally, logging_level='Silent' reduces log output during training to make the 
process more concise. With this combination of parameters, CatBoost can produce more accurate and 
efficient models in classification tasks. 
3.14. Stacking 

The Stacking Ensemble Learning technique aims to improve classification performance by 
combining multiple base models and using meta models to produce more accurate final predictions. In 
this approach, several machine learning algorithms are used as base models, including 
RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, 
HistGradientBoostingClassifier, XGBClassifier, and CatBoostClassifie. Each of these models has 
different characteristics in handling data patterns, so by combining them, the system can utilize the 
advantages of each model. 

 
Stacking Program Code 
base_model_preds= [] 
for model in base_models: 

model.fit(X_train_base, y_train_base) 
pred = model.predict(X_train_meta) 
base_model_preds.append(pred) 

 
stacking_dataset= np.column_stack(base_model_preds) 
meta_model = RandomForestRegressor() 
meta_model.fit(stacking_dataset, y_train_meta) 

Figure 4. Stacking Program Code 
 
In the first part of the code in Figure 4, a `base_models` list is created to store all the models 

used in the initial stacking stage. Then, an empty list `base_model_preds` is prepared to store the 
prediction results of each base model. In the `for` loop, each model in `base_models` is trained using 
the `X_train_base` and `y_train_base` datasets. After training, the model is used to make predictions on 
the `X_train_meta` dataset, and the prediction results are stored in a list `base_model_preds`. This 
process allows each model to provide an initial estimate of the class of the metadataset. After all the 
base models have provided predictions, the next step is to combine all the predictions into one stacked 
dataset using `np.column_stack(base_model_preds)`. This dataset has dimensions that match the 
amount of data in `X_train_meta` but with features derived from the predictions of the various base 
models. Thus, this dataset is no longer the original features but a representation of the decisions of the 
various base models that have been trained previously. The final step in stacking is to train the meta-
model, which in this case is Logistic Regression. This model receives the stacked dataset 
(`stacking_dataset`) as input and is trained using `y_train_meta`. The meta-model acts as a decision 
maker that learns from the prediction patterns of the base models to make a more accurate final decision. 
With this approach, the system is able to reduce the bias of one particular model and increase 
generalization in classification. 
3.15. Model Performance Evaluation 

After performing the model building stages, the following are the results of evaluating the 
model performance of the training base model and the final model using stacking. 

Based on the model performance evaluation results in Table 6, several important things can 
be obtained by comparing the performance of various models based on Accuracy, Precision, Recall, F1-
Score, and ROC AUC metrics. From the table, stacking has the best performance compared to other 
models, with the highest Accuracy 0.8669, highest Precision 0.8712, highest Recall 0.8000, highest F1-
Score 0.8341, and highest roc_auc score 0.8575. This result shows that stacking is able to improve 
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classification performance well compared to other basic models. In further analysis, the highest 
Accuracy was achieved by stacking with a value of 0.8669, while the lowest was Histogram Gradient 
Boosting with a value of 0.8098. This number indicates that stacking is able to combine the strengths of 
several base learner models to produce more accurate predictions. At the same time, Histogram Gradient 
Boosting has the lowest Accuracy, possibly because this model is too sensitive to data that is difficult 
to classify and tends to experience overfitting on noise in the dataset. 

 
Table 6. Training Results of SDP Base Model and Learner Model 

Matrix 
Evaluation 

Random 
Forest 

Extra 
Trees 

Adaptive 
Boosting 

Gradient 
Boosting 

Histogram 
Gradient 
Boosting 

XGBoosting Categorical 
Boosting 

Stacking 

Accuracy 0.8365 0.8403 0.8441 0.8212 0.8098 0.8250 0.8403 0.8669 
Precision 0.8190 0.8541 0.8415 0.8181 0.8061 0.8200 0.8469 0.8712 

Recall 0.7818 0.7454 0.7727 0.7363 0.7181 0.7400 0.7545 0.8000 
F1Score 0.8000 0.7961 0.8056 0.7751 0.7596 0.7809 0.7980 0.8341 
Roc_auc 0.8288 0.8269 0.8340 0.8093 0.7969 0.8139 0.8282 0.8575 

 
In the precision metric, stacking also shows the highest value of 0.8712, while Histogram 

Gradient Boosting has the lowest Precision of 0.8061. The high Precision of stacking indicates that this 
model produces fewer false positives than other models, which means it is better at avoiding the 
misclassification of negative classes. In contrast, the low Precision of adaptive boosting indicates that 
this model more often misclassifies negative classes as positive. The highest Recall is also achieved by 
stacking with a value of 0.8000, while the lowest is Histogram Gradient Boosting with a value of 0.7181. 
This number shows that stacking is able to capture almost all instances of the positive class, which is 
very important in scenarios where a mistake in detecting the positive class can have a big impact, such 
as in fraud detection. The low Recall of adaptive boosting indicates that the model more often fails to 
detect the positive class, resulting in many false negatives. In terms of F1-Score, stacking again shows 
the highest performance with a value of 0.8341, while adaptive boosting has the lowest value of 0.7586. 
The high F1-Score of stacking shows that this model has a good balance between Precision and Recall, 
which means that it is able to detect positive classes well while keeping the number of false positives 
low. In contrast, the low F1-Score in adaptive boosting indicates that the model is not optimal enough 
in handling the imbalance between Precision and Recall. 

In the ROC AUC metric, stacking has the highest value of 0.8575, while Histogram Gradient 
Boosting has the lowest value of 0.7969. The high ROC AUC of categorical boosting and stacking 
indicates that these two models have a good ability to distinguish between positive and negative classes 
at various classification thresholds. In contrast, the low ROC AUC in Histogram Gradient Boosting 
indicates that this model has poorer discrimination ability than the other models, making it more difficult 
to distinguish between positive and negative classes well. The superiority of stacking in almost all 
evaluation metrics indicates that it is able to combine the strengths of various weak classifiers and utilize 
meta-learner models to produce more accurate decisions. It can mitigate the weaknesses of a single 
model that may be overly biased towards specific patterns in the data.  In addition, stacking is also able 
to lift the performance of weak models by combining the outputs of several models so that the 
advantages of another model can compensate for the weaknesses of one model. In terms of bias and 
variance, stacking reduces the bias that may occur in decision tree-based models such as random forest 
or extra trees. It reduces the high variance in boosting models such as XGBoost or adaptive boosting. In 
this way, stacking can produce more stable and accurate predictions. 

 In addition, stacking is more resistant to noise in the dataset because it uses a variety of 
different approaches to handle the data, making it more difficult for noise to cause significant 
classification errors. Based on the evaluation results of these models, stacking is the best model to use 
for classification in this system, as it has the highest Accuracy, Precision, Recall, F1-Score, and ROC 
AUC compared to other models.   Based on these results, the use of stacking is highly recommended for 
this classification scenario, especially if the main goal is to maximize Accuracy and ensure a balance 
between Precision and Recall.  
3.16. Statistical  Test 

The statistical test of this research is based on ROC AUC (Receiver Operating Characteristic 
- Area Under Curve) as the primary performance metric. ROC AUC is widely recommended in the 
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domain of software defect prediction due to its ability to effectively handle class imbalance, such as the 
disparity between bug and non-bug instances, and its independence from classification thresholds. 
Unlike accuracy, which may be misleading in imbalanced datasets, ROC AUC offers a comprehensive 
measure of a model's ability to distinguish between defective and non-defective instances, making it a 
more reliable and informative metric in this context. 

To enhance the robustness of the evaluation, the statistical testing is conducted using k-fold 
cross-validation with k = 5. This method partitions the dataset into five folds, where each model is 
iteratively trained on four folds and tested on the remaining one. The ROC AUC scores obtained from 
each fold serve as the input for the statistical tests. This cross-validation strategy reduces the risk of 
overfitting and ensures that the comparative analysis reflects consistent model performance across 
different data partitions. 

 
Tabel 8. Shapiro  Wilk Normality Test 

Algorithm Wilk Test P-Value Interpretation 
RF  0.8645 0.2449 Normal 
ET 0.9329 0.6160 Normal 

AdaBoost 0.9240 0.5559 Normal 
GBoost 0.9779 0.9232 Normal 
HGB 0.9303 0.5983 Normal 

XGBoost 0.9472 0.7169 Normal 
CatBoost 0.7883 0.0648 Normal 
Stacking 0.9283 0.5845 Normal 

 
To validate the hypothesis disccussed in previous section, this research conduct Shapiro-Wilk 

Normality Test and Paired T-Test. These statistical tests are conducted to assess the normality of data 
distribution and to determine whether the performance difference among the algorithms are statistically 
significant. The shapiro Wilk test examines whether the performance score for each algorithm follow a 
normal distribution, which is an critical assumption for applying the paired t-test. As shown in the table 
8, all algorithms have p-values greater than 0.05, indicating that their performance distributions do not 
significantly deviate from normal. Therefore, it can be interpret that the performance scores of each 
algorithm are  normally distributed, validating the use of he paired t-test in the further step. 

 
Tabel 9. Comparing Stacking with Other Algorithms with Paired T-Test  

Algorithm Mean Difference T-Test P-Value Interpretation 
RF +0.0122 3.7384 0.0201 Significant 
ET +0.0391 8.7400 0.0009 Significant 

AdaBoost +0.0187 4.2677 0.0130 Significant 
GBoost +0.0411 6.4345 0.0030 Significant 
HGB +0.0387 5.7926 0.0044 Significant 

XGBoost +0.0197 2.8450 0.0466 Significant 
CatBoost +0.0338 5.4142 0.0056 Significant 

 
The paired t-test was conducted to statistically compare the performance of the Stacking 

ensemble method against each of the other algorithms. T-test indicated the size of difference relative to 
the variation in the data. The larger the t-statistic, the more likely the means are different. Based the 
results on table 9, shows that each model comparisons yield p-values below 0.05, indicating that the 
differences in performance between stacking and each of the other models are statistically significant. 
However, statistical significance alone does not imply that stacking performs better—it is also essential 
to examine the direction of the performance differences.  

For instance, the largest mean difference is observed between Stacking and Gradient Boosting 
(+0.0411), supported by a strong t-statistic of 6.4345 and a p-value of 0.0030, confirming that the 
improvement is statistically significant. Similarly, comparisons with Extra Trees (+0.0391), Histogram 
Gradient Boosting (+0.0387), and CatBoost (+0.0338) also show notable performance gains, each with 
p-values well below the 0.01 threshold, further supporting the robustness of the results. 

Even the smallest observed mean difference, between Stacking and Random Forest (+0.0122), 
yields a t-statistic of 3.7384 and a p-value of 0.0201, which still meets the standard criterion for statistical 
significance (p < 0.05). This pattern holds across all comparisons: despite varying magnitudes of 
improvement, every p-value falls below 0.05, confirming that the performance improvements of the 
Stacking model are not due to random chance. 
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From the results determine that Stacking outperforms all the individual algorithms tested, with 
the differences being statistically significant. These findings are valuable as they support the use of 
ensemble methods like Stacking to combine the strengths of multiple base learners, leading to improved 
predictive performance. Moreover, since the normality assumption is satisfied, the statistical inference 
made from the paired t-test is reliable. This emphasizes that model selection should not only rely on 
average performance but also consider statistical validation to ensure robust conclusions. 
3.17. Confusion Matrix 

Confusion Matrix reflects four main metrics including True Positive (predicted true, actual 
true), True Negative (predicted false, actual false), False Positive (predicted true, actual false), and False 
Negative (predicted false, actual  false). which give an indication of how the model classifies positive 
and negative classes in the test data. The following in table 6 is the result of the calculation of confusion 
metrics from all base learner algorithms and learner models. 

 
Table 7. Confusion Matrix of Base Model and Learner Model SDP 

Confusion Matrix RF ET AdaBoost GBoost HGB XGBoost  CatBoost Stacking 

True Positive 86 82 85 81 79 82 83 88 
True Negative 134 139 137 135 134 135 138 140 
False Positive 19 14 16 18 19 18 15 13 
False Negative 24 28 25 29 31 28 27 22 

 
Based on Table 7, the Stacking model shows the best performance, with the highest number 

of True Positives of 88, compared to other models such as Random Forest (86), AdaBoost (85),CatBoost 
(83), XGBoost (82), Extra Trees (82), Gradient Boosting (81), and the lowest is Histogram Gradient 
Boosting (79). This results indicates that Stacking is able to recognize positive classes better than other 
models. The ability to detect True Negative (TN) is also highest in the Stacking model (140), which 
means that this model is more accurate in classifying negative data correctly, followed by Extra Trees 
and CatBoost, which each have TN of 139 and 138. In contrast, the Random Forest and Histogram 
Gradient Boosting model has the lowest TN (134), indicating that it more often misclassifies negative 
data as positive. 

In addition, the classification error measured by False Positive (FP) and False Negative (FN) 
shows that the Random Forest and Histogram Gradient Boosting model has the highest error rate, with 
FP of 19. This result indicates that the model more often misclassifies negative data as positive (False 
Positive) and fails to recognize the positive class (False Negative) correctly. In contrast, the Stacking 
model has the lowest misclassification rate, with an FP of only 13 and an FN of 22, which means it 
makes the fewest errors in identifying both classes.  

Based on this analysis, Stacking is the optimal model for handling classification because it has 
high TP and TN and low FP and FN, resulting in better accuracy than other models. The Extra trees 
model is also a strong choice, as it performs close to Stacking with a low error rate. If computational 
complexity is a consideration, models such as AdaBoost and CatBoost can be an alternative, as they still 
have a good balance between accuracy and efficiency. In contrast, the Histogram Gradient Boosting 
model shows the weakest performance, as it has the highest number of misclassifications in both FP and 
FN, making it less recommended in this classification scenario. 

 
4. CONCLUSION 

The implementation of AI-driven testing in software testing provides a more efficient and 
accurate solution compared to manual testing. By utilizing machine learning (ML)-based approaches—
particularly bug prediction through the Stacking Ensemble Model—this study demonstrates that 
software defects can be identified at earlier stages of the Software Development Life Cycle (SDLC). 
This early detection enables better resource management, reduces post-release maintenance costs, and 
enhances overall software quality. A total of 8,924 data points were collected from five different Java 
projects. Since the dataset was imbalanced, an undersampling technique was applied to address class 
distribution issues and improve model performance. During data preprocessing, steps such as data 
cleaning, normalization, and undersampling were carried out. After these processes, the remaining 
dataset consisted of only 1,314 data points, with a distribution of 746 clean instances and 568 buggy 



Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r 
 

Predicting Software Defects at Package Level in Java Project Using Stacking  (Nabila Athifah Zahra) 

105 

instances. This research applies the Stacking Ensemble approach to improve the accuracy of software 
defect prediction using software metrics from open-source projects on GitHub. The model is developed 
in two stages: base learner (level-0) using AdaBoost, Random Forest (RF), Extra Trees (ET), Gradient 
Boosting (GB), Histogram-based Gradient Boosting (HGB), XGBoost (XGB), and CatBoost (CAT) 
algorithms, and a learner model (level-1) that optimizes the results with ensemble stacking techniques. 
Based on the model evaluation results, the Stacking Model outperforms other individual models. With 
an ROC-AUC score of 0.8575, the model proves to be more reliable in distinguishing between defective 
and non-defective software. Additionally, the stacking approach improves the performance of weaker 
classifiers such as Histogram Gradient Boosting. Therefore, the findings of this study confirm that 
combining multiple models through ensemble stacking yields a more robust and balanced classification 
system compared to using a single model. A paired t-test confirmed that the Stacking model’s 
performance improvements over individual models are statistically significant, with all p-values below 
0.05. The most notable gain was against Gradient Boosting (+0.0411, p = 0.0030), and even the smallest 
improvement remained significant. These results, supported by normality assumptions, validate the 
robustness and reliability of the Stacking approach. By leveraging various ensemble techniques, the 
model effectively minimizes prediction errors and enhances the accuracy of software defect detection. 
Future development of AI-driven testing models may involve testing on more diverse datasets and 
applying more comprehensive hyperparameter optimization to further improve performance. Moreover, 
integrating this predictive model into the Continuous Integration/Continuous Deployment (CI/CD) 
pipeline can support automation in the testing process and significantly improve software development 
efficiency. 
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