
International Journal of Advances in Data and Information Systems
Vol. 6, No. 1, April 2025, pp. 90~106
ISSN: 2721-3056, DOI: 10.59395/ijadis.v6i1.1368 r 90

Predicting Software Defects at Package Level in Java

Project Using Stacking of Ensemble Learning Approach

Nabila Athifah Zahra1, Amalia Anjani Arifiyanti2, Dhian Satria Yudha Kartika3
1,2,3 Department of Information System, Veteran National Development University, East Java, Indonesia

 Article Info ABSTRACT

Article history: Compared to manual and automated testing, AI-driven testing
provides a more intelligent approach by enabling earlier prediction of software
defects and improving testing efficiency. This research focuses on predicting
software defects by analizing CK software metrics using classification
algorithms. A total of 8924 data points were collected from five open-source Java
projects on Github. Due to class imbalanced, undersampling was applied during
preprocessing along with data cleaning and normalization. Tthe final dataset is
consisting of 1314 instances (746 clean and 568 buggy). The predictive model is
developed in two stages: base learner (level-0) using AdaBoost, Random Forest
RF), Extra Trees (ET), Gradient Boosting (GB), Histogram-based Gradient
Boosting (HGB), XGBoost (XGB), and CatBoost (CAT) algorithms, and meta-
learner (level-1) that optimizes the results using ensemble stacking techniques.
The stacking model achieved ROC-AUC score of 0.8575, outperforming all
individual classifiers and effectively distinguishing defective from non-defective
software components. The comparison of performance improvements between
the base model (tree-based ensemble) and stacking was statistically validated
using paired t-tests. All p-values were below 0.05, confirming the significance of
Stacking’s superior performance, with the largest gain observed against Gradient
Boosting (+0.0411, p = 0.0030). The confussion matrix of stacking model is the
most optimal model because it has high of True Positive and True Negative, while
False Positive and False Negative values are relatively low. These findings affirm
that ensemble stacking yields a more robust and balanced classification system,
enhancing defect prediction accuracy and enabling earlier issue detection in the
Software Development Life Cycle (SDLC).

Received Feb 13, 2025
Revised Apr 12, 2025
Accepted Apr 29, 2025

Keywords:

Software Defects
Prediction
Classification
Ensemble
Java

This is an open access article under the CC BY-SA license.

Corresponding Author:
Nabila Athifah Zahra,
Department of Information System,
Universitas Pembangunan Nasional Veteran Jawa Timur,
Jl Raya Rungkut Madya, Surabaya, Indonesia.
Email: 21082010053@student.upnjatim.ac.id

1. INTRODUCTION

Software testing is one of the essential phases of the software development life cycle (SDLC)
stage. The quality and stability of the software is a crucial thing that needs to be considered in software
development because, from this stage, it will be known about errors, defects, or vulnerabilities of a
system [1]. Software testing has stages of the process that are carried out systematically and planned,
otherwise known as the Software Testing Life Cycle (STLC). STLC refers to specific stages ranging from
requirements analysis, test planning, test case generation, test environment setup, and test
implementation [2]. In the testing phase, the tester will observe the running of the system with the aim
of finding the problems, failures or errors. Failure is defined when the running system is different from
the expected conditions based on the requirements of a system [3].

https://creativecommons.org/licenses/by-sa/4.0/
mailto:21082010053@student.upnjatim.ac.id

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

91

Several types of software testing are most often used namely functional and structural testing.
Functional testing, also known as black-box testing, is testing the functional features by observing the
input and output results of the software without knowing the structure of the software code. Meanwhile,
structural testing, also known as white-box testing, is software testing that analyzes and examines
internal structures, such as code implementation, data flow, and possible failures in software. Software
testing is very important because it not only has an impact on performance but also on the company's
reputation for financial losses[4].

One of Software Bug incident happened to the Uber app in France. The bug caused customer
trip data to be tracked even though they had left the application. This issue led to a 45-million-dollar
lawsuit against the company. In the context of software development, the cost of bug fixing often
increases exponentially depending on what phase of development the bug is found. According to the
Cost of Quality principle, finding and fixing a bug in the production or post-release phase requires 30-
100x more resources than if the bug was identified pre-release. In 2018, software company Tricentis
claimed that 606 reports of software bugs caused the company to lose 1.7 million dollars [5]. The
incident also caused 5-20% of users to lose trust in the company [6]. These incidents imply that software
defects will cause losses both financially and reputationally. Therefore, the software testing phase is
considered a crucial and very important phase.

There are several types of testing, one of which is definitely used is manual functional testing.
Manual software testing is considered to require more time and resources, and there is still a possibility
of human error, so the results are less efficient. There is a need to streamline the testing process by
applying automation testing, machine learning (ML), and artificial intelligence (AI) [1]. Machine
Learning is a part of AI that is able to learn data and improve performance without explicit
programming. This is the foundation of AI-driven. The use of AI in software testing makes software
more reliable, efficient and effective by utilizing automation and machine learning [7].

Currently, research on AI-driven testing is growing in both academia and industry. Bug
prediction approaches are starting to focus on prediction rather than detection. This prediction approach
aims to identify potential bugs in the early stages of the SDLC phase, in contrast to traditional bug
detection, which is usually done after bugs appear or often uses automated testing tools. With the model's
capability to predict software defects, testers can more efficiently manage resources, prioritize testing,
and improve the quality of products [1]. With software defect prediction, testing resources can be
optimized by directing focus to bug-prone areas. This approach will minimize the cost of software repair
and modification after release.

Several studies on Software Defect Prediction are relevant to this research. One of them is
research titled Software Defect Prediction Using Ensemble Learning: An ANP-Based Evaluation
Method, which discusses the prediction of software defects using an ensemble learning approach [8].
This research aims to evaluate the performance of classification algorithms in Software Defect
Prediction (SDP) by comparing the performance of single classifiers (SMO, MLP, KNN, and Decision
Tree) with Ensemble Methods (Bagging, Boosting, Stacking, and Voting). This research uses 11 datasets
of Java and C++ software defect projects taken from public repositories. This data includes software
analytics matrices such as complexity and code size.

One of the machine learning model approaches used to predict software defects is
classification or egression using software code metrics. This approach aims to identify software modules
that are prone to errors or bugs based on the analysis of source code metrics. Software metrics generated
from source code extraction are used to build predictive models. Software metrics that are commonly
used in predicting software defects are McCabe Metrics, Halstead Metrics, and Static Code Metrics [9].
This approach is also done using Chidamber and Kemerer Metrics or CK matrix to build a prediction
model for software bugs [5].

Several studies that discuss software defect prediction use Java-based projects as research
objects because they have OOP-based software metrics. Java is an object-oriented programming
language that has standard development documentation that makes it easy to use. Java has the scalability
of a software solution that is able to provide strong performance and has scalability, which is very
important for companies.

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

92

Table 1. The Popularity of Java Project
Nov 2024 Nov 2023 Change Programming Language Ratings Change

1 1 Python 22.85% +8.69%
2 3 Ù C++ 10.64% +0.29%
3 4 Ù Java 9.60% +1.26%
4 2 Ú C 9.01% -2.76%
5 5 C# 4.96% -2.67%
6 6 JavaScript 3.71% +0.50%
7 13 Ù Go 2.35% +1.16%
8 12 Ù Fortran 1.97% +0.67%
9 8 Ú Visual Basic 1.95% -0.15%

10 9 Ú SQL 1.94% +0.05%

Java's popularity is evidenced by the fact that 90% of Fortune companies use Java [10]. Based

on a survey conducted by TIOBE Programming Community Index in 2024, which is shown in Figure
1, Java is ranked 3rd in the most popular programming language with a rating of 9.6%. The popularity
of Java in November 2024 increased by 1.26% compared to November 2023 [11]. According to a survey
conducted by Eclipse in 2019, Java became the most important programming language in the realm of
Artificial Intelligence (AI), Internet of Things (IoT), and big data. In the field of AI, Java is used for the
development of Machine Learning solutions, Neural Networks, genetic programming, and multi-robot
systems. Therefore, in this research, Java is chosen as the object of focus because it has a high level of
use or adoption in the enterprise. Java also has historical relevance in previous research on software
defects. By using Java-based projects as the object, this research will utilize Object Oriented
Programming-based software metrics in Java to produce a more predictive model of software defects.

Based on previous research, one of the methods used to predict software defects is using the
ensemble method. The ensemble learning method, or the combination of several base models, has
proven to be able to improve the accuracy of the model compared to approaches that only use one
algorithm (Single Classifier) [12]. One of the ensemble learning techniques used in this research is the
Stacking technique. This method combines predictions from several base models (base classifiers) to
produce models that have a higher level of accuracy. An ensemble approach to predicting software
defects has also been made using 10 NASA MDP public datasets and using 13 different performance
measures [13]. The ensemble method used in the study was stacking, which resulted in an accuracy of
92.53%. The ensemble method approach for predicting software defects has also been carried out using
Random Forest, Extremely Randomized Trees and XGBoost algorithms as a baseline classifier and
using ensemble techniques in the form of a Stacking Classifier (STC) to produce the best accuracy rate
[14]. When compared with other ensemble methods, the stacking method is considered superior because
of its ability to combine the strengths of various models by prediction results and training meta-learner
models to optimize the final prediction.

Based on the background description above, it is found that software defect prediction research
is urgently needed to minimize the loss or impact of the discovery of post-release software defects. By
predicting bugs before the software is released, the cost of bug fixing will also be reduced. Moreover,
with the existence of software analytics, this technique can be implemented in various object-oriented
programming-based project development. Based on this background, the aim of this research is to
determine the prediction of software defects using the ensemble learning method. Seven algorithms will
be used to create a base model in this study, including Adaptive Boosting, Random Forest, Extra Trees,
Gradient Boosting, Histogram Gradient Boosting, XGBoost, and Categorical Boosting. The ensemble
stacking technique was also used to make the model's final prediction. The output produced in this is a
machine learning model to predict software defects.

2. RESEARCH METHODOLOGY

Based on Figure 2, this research begins with collecting software defect data. The data collected is
historical data related to Java project software defects obtained from open source projects on the Github
repository platform and the results of extracting software metrics from the project. After the data is collected,
the next step is to pre-process the data to clean, normalize, and transform the data so that it is ready to be

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

93

used in model training [15]. Next, the classification stage is carried out, the training model is trained through
two levels, the base learner (level-0) and the learner model (level-1). In the base learner training, tree-based
ensemble algorithms used include AdaBoost, Random Forest (RF), Extra Trees (ET), Gradient Boosting
(GB), Histogram-based Gradient Boosting (HGB), XGBoost (XGB), and CatBoost (CAT) [12]. During data
training, hyperparameter optimization is also performed to optimize the value of the base learner model .

Figure 2. Flow of Research Methodology

Furthermore, the optimized model will be used at Level-1 as input for the Stacking Ensemble

process. At this stage, several basic models are combined to produce the final prediction using the stacking
ensemble technique with the Logistic Regression algorithm as a meta-classifier to get the final prediction
value [16]. In the testing layer, the performance of the trained model will be tested. Testing is done using
testing data as input for the trained model.

Furthermore, the prediction process is carried out to validate the performance of the model with
the final result in the form of classification between defective and undefective. The output of the testing layer
ensures that the model performs as expected on test data that has never been seen before. Once the model is
trained, performance evaluation is performed to measure the performance of the model with relevant
evaluation metrics, such as accuracy, precision, roc_auc, f1score, and recall [5].
1.1 Data Collection

The data collection process begins with the selection of open source Java projects with the
provision of having more than 1000 commits [17]. The project must also have documentation or bug history
on its modules because it will be used in the data labeling process. Furthermore, after selecting the project,
software metrics extraction will be carried out using the CK Metrics Calculator. CK Metrics Calculator is a
software analytics tool specifically for projects based on Object Oriented Programming (OOP) Java
language[18]. This tool will calculate the code matrix at the package level in Java projects using static
analysis, so it does not require compiled code [18].

The resulting analysis coverage is CK Metrics (Chidamber and Kemerer Metrics Suite) which
consists of class-level metrics such as Coupling Between Objects (CBO), Depth of Inheritance Tree (DIT),
and Number of Methods (NOM) [19]. There are also method-level metrics such as Cyclomatic Complexity
and Line of Codes (LOC). The result of the extraction process is raw software metrics data. This data is
quantitative information that reflects the quality and characteristics of the software project being analyzed.
The dataset used for the training data of the software defect prediction model in this research is software
analysis matrix data from java-language open source projects obtained from public repositories, namely
Github. In this research, the dataset used comes from 5 Java-language open source projects that have bug
trackers docummentation, in Github [20]. The data shows the results of softwaare metrics extraction from 5
open-source Java projects, namely JFreeChart, Closure-Compiler, Commons-Math, Commons Lang, and
Mockito, with a total of 8924 packages.
1.2 Data Preprocessing

In the data pre-processing stage, several steps must be taken to manage the results of data collection.
The process starts with software metrics feature selection, where relevant features are selected according to the
purpose of the analysis, such as class, method, or code complexity metrics [15]. Next, data cleaning is performed
to ensure the quality of the dataset, including removing duplicate data, handling missing values, and correcting
errors. After that, in the data acquisition stage, the data is divided into training data and testing data. The process
continues with data balance analysis, which aims to check the distribution of data for balance, thus avoiding
bias and ensuring representative analysis results.

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

94

1.3 Software Metrics Feature Selection
Software metrics feature selection is a crucial step in the software defect dataset creation process.

The goal is to identify important attributes relevant to the analysis needs while filtering out unnecessary
attributes from the raw data [22]. This step helps to increase the efficiency of the analysis and reduce the
complexity of the processed data. In the raw data, some attributes are irrelevant or do not contribute
significantly to the identification of software defects. Therefore, the selected features need to be aligned with
research or recognized standards. In this context, feature selection is done by referring to CK metrics
(Chidamber & Kemerer metrics) [5]. CK metrics include important metrics such as Coupling Between
Objects (CBO), Depth of Inheritance Tree (DIT), Lack of Cohesion of Methods (LCOM), and others, which
are proven to provide significant insights into code quality and potential defects. This research shows that
the use of CK metrics can help identify patterns in code that are potential sources of bugs while improving
the accuracy of defect prediction. Feature selection not only serves to improve efficiency but also has a
significant impact on the quality of analysis results. For example, research shows that datasets focused on
important attributes have a higher prediction accuracy rate than datasets that use all attributes without
selection [5].
1.3.1 Data Splitting

The data splitting scheme in this study divides the dataset into two parts, namely 80% for the
training process and 20% for test data (holdout). The training dataset (X_train, y_train) will be divided into
two parts, namely (X_train_base, y_train_base) as much as 50% of the training set to train the base model.
Moreover, (X_train_meta, y_train_meta) as much as 50% also to train the meta-model [16]. The first division
aims to set aside holdout data for final validation, while the second division aims to create the base model
and meta-model in the stacking ensemble
1.3.2 Data Cleaning

Data cleaning is an important step to ensure the quality of the dataset to be used in software metrics
analysis [23]. At this stage, the collected raw data is thoroughly examined to identify and address issues such
as duplicate data, missing values, data outliers, and errors in data format. Data cleaning aims to improve the
accuracy of the analysis results by removing elements that may negatively affect the results.
1.3.3 Data Balance Analysis

Data balance analysis aims to evaluate the distribution of classes in a dataset, such as the ratio
between buggy and non-buggy data. Unbalanced data distribution can cause the analysis model to be biased
towards the majority class, thus reducing the predictive ability of the minority class. This imbalance often
occurs in classification problems where one class has more samples than the other. Some techniques used to
deal with this problem are oversampling the minority class or undersampling the majority class[9].
1.4 Data Labeling Pipelines

The labeling pipeline mechanism focuses on creating a reliable dataset of real bugs for Java
programs by identifying actual bug fixes from version control history [21]. The process begins by scanning
the version control logs of open-source Java projects to identify commits that fix bugs. This identification is
usually done by checking whether a commit references a bug ID from a bug tracker or if the bug tracker links
back to a commit. Only commits that involve changes to the source code (excluding documentation or
configuration files) are considered valid bug fixes.
1.5 Base Model Training

In this stage, the dataset that has been divided into training data will be trained using the tree-
based ensemble algorithm. Tree-based ensembles are one of the methods in ensemble learning that combines
several decision trees to improve prediction performance. This research uses tree-based ensemble algorithms
including AdaBoost, Random Forest (RF), Extra Trees (ET), Gradient Boosting (GB), Histogram-based
Gradient Boosting (HGB), XGBoost (XGB), and CatBoost (CAT) [12]. This method has been widely used
in software defect prediction due to its ability to handle complex data and provide results that can be
interpreted well. The algorithm method for creating a baseline model for predicting software defects is based
on the references in the following table.

Each of these algorithms has a different approach to model building, with the main goal of
reducing bias and variance in predictions. For example, AdaBoost prioritizes improving accuracy by
giving more weight to data that is difficult to predict. Meanwhile, Random Forest and Extra Trees use a
random feature selection approach to build a variety of more stable decision trees. addition, Gradient
Boosting and XGBoost focus on incrementally improving the model by minimizing previous prediction
errors. The model training process is done by parameter tuning the various hyperparameters for each

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

95

algorithm, in order to find the best combination that improves model performance on the data used [12].

Table 2. Reference of Tree-Based Ensemble Algorithm
Algorithm Reference
AdaBoost [12]; [24]; [25]

Random Forest (RF) [14]; [12]; [15]; [24]
Extre Trees (ET) [12]; [14]

Gradient Boosting (GB) [12]; [25]
Histogram-based Gradient Boosting (HGB) [12]; [26]

XGBoost (XGB) [14]; 12]; [19]; [27]
CatBoost (CAT) [12]; [24]

1.5.1 Random Forest

Random Forest is part of the ensemble learning algorithm, which is an algorithm that utilizes
many models to get more accurate prediction results than just using decision trees [23]. The main
concept of naming "Random" in Random Foret is that sampling is done randomly from the training data
set and feature subsets are always considered when separating nodes. For example, if there are p total
features then only m features are randomly selected for data splitting.
1.5.2 Extra Trees

Extra Trees (ET) is an algorithm that is almost similar to the Random Forest algorithm, which
both create decision trees to make the final prediction by combining the results of all decision trees.
What is different between ExtraTrees and Random Forest is that each decision tree is trained using the
entire dataset and nodes or features are selected randomly [12].
1.5.3 Adaptive Boosting

AdaBoost or Adaptive Boosting is a classification algorithm that works iteratively by training
weak learners such as decision trees on a dataset and weighting each training instance based on its
classification. Instances that are difficult to classify will be the focus of greater attention in subsequent
iterations. The final prediction is calculated by integrating the results of all base classifiers using a
weighted majority vote approach, where each base classifier will contribute based on its performance.
The advantage of the AdaBoost algorithms that it has the ability to adaptively and iteratively correct
classification errors so that it can produce a more accurate model than just one base model [12].
1.5.4 Gradient Boosting

Gradient Boosting (GB) is a generalization of the AdaBoost ensemble method that allows the
use of various loss functions. Unlike AdaBoost, GB utilizes the gradient to build a new base classifier
instead of the weight of the misclassified instances [25]. Although GB improves efficiency in building
the base classifier, it has the disadvantage sub-optimal memory usage and processing time.
1.5.5 Histogram Gradient Boosting

Histogram-Based Gradient Boosting (HGB) is an ensemble boosting method that uses feature
histograms to select the best split efficiently and reliably. Compared to Gradient Boosting (GB), HGB
has an advantage in terms of processing speed, making it more optimal for handling large and complex
datasets [26].
1.5.6 XGBoost

XGBoost (Extreme Gradient Boosting) is a machine learning ensemble algorithm designed to
improve the performance of gradient-boosted decision trees algorithms through a faster, parallel, and
distributed approach. Through model tuning, parameter regulation, and memory usage efficiency,
XGBoost can significantly reduce computation time. Essentially, XGBoost is used to minimize the loss
function by adding a weak classifier [28]. XGBoost offers additional capabilities such as handling data
with missing values (Sparse Aware), parallel structure to improve performance, and the ability to work
with additional data on the trained model [29].
1.5.7 Categorical Boosting

CatBoost (Categorical Boosting) is a meta model for classification. This algorithm has two
main characteristics. First, CatBoost effectively handles categorical features using a one-hot encoding
technique. Second, it uses oblivious decision trees as the base classifier, where each level of the tree
uses the same splitting criteria across nodes. This symmetrical tree structure helps minimize overfitting

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

96

and speeds up training time. CatBoost has a reliable performance in performing classification compared
to other algorithms [25].
1.5.8 Stacking Ensemble

Stacking is a heterogeneous ensemble model that combines predictions from multiple base
classifiers through a meta-classifier to produce a final prediction model. The training dataset is divided
into two parts: one for training the base classifier and another for training the meta-classifier. Each base
classifier is trained using the entire training dataset with different learning algorithms. The prediction
results of the base classifier are used as input to train the meta-classifier which will generate the final
prediction by combining the outputs of all the base classifiers. The stacking algorithm consists of three
main steps, namely base classifier training, new dataset creation, and meta-classifier training [28]. This
approach allows stacking to utilize the combined power of various learning algorithms to improve the
accuracy of the prediction model [8]. The following is the formula used in the stacking technique shown
in formula (1).

 𝒴!"#$ = [𝒴%,			𝒴(,… . . 𝒴)*%]	 (1)
 Description:

𝒴𝑏𝑎𝑠𝑒=final	model	
𝒴𝑖−𝑛=value	of	each	model	

1.6 Model Performance Evaluation

After all the model training is completed and the accuracy and performance values of the
ensemble learning method are obtained, the next step is to evaluate the model. Several evaluations were
conducted to assess the performance of the ensemble prediction model, including accuracy, precision,
Recall, f1score, and roc_auc score . Accuracy (2) is calculated as the ratio of the number of correct
predictions to the total data, but it is less effective if the classes are not balanced. Precision (3) measures
the proportion of correct positive predictions out of all positive predictions, while Recall (4) measures
how many positive instances were successfully identified out of the total true positive instances. F1
Score (5) which is the harmonic mean between Precision and Recall, is used to balance the error between
False Positive (FP) and False Negative (FN), especially in unbalanced datasets. ROC-AUC (6) is used
to assess the model's ability to distinguish between positive and negative classes by calculating the area
under the ROC curve. The higher the AUC value (close to 1), the better the model is at distinguishing
classes, while a value of 0.5 indicates the model's performance is no better than a random guess [5]. The
following is the formula for calculating the model performance evaluation.

Accuracy = !"#!$	
!$#!"#&$#&"

 𝑥100%
(2)

Precision = !$	

!$#&$
 𝑥100%

(3)

Recall = !$	

!$#&"
 𝑥100%

(4)

F1 Score = 2	𝑥 '()*+,+-.	/	()*011

'()*+,+-.#()*011
 𝑥	100%

ROC- AUC = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)	𝑑	𝐹𝑃𝑅2
3

 = ∫ 𝑇𝑃𝑅/𝐹𝑃𝑅42(𝑥)0𝑑𝑥2
3

(5)

(6)

Note: 𝑇𝑃 = 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑇𝑁 = 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,	
𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒, 𝐹𝑃𝑅 = 𝐹𝑙𝑎𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒

3. RESULTS AND DISCUSSION
The results and discussion chapter will discuss the implementation of the program based on

the stages of the research methodology, starting from data collection, data preprocessing, prediction
model building, to its implementation.

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

97

3.1. Data Collection
Data collection is done by exploring open-source Java projects in the public repository,

GitHub. There are several prerequisites for choosing a Java project that will be used as a dataset, which
must have documentation and bug history in its modules. Through the bug history in the project modules,
the data labelling process will be carried out in each module into the buggy and clean classes. In addition,
the project must also have more than 1000 commit. Extraction or retrieval of software metrics data on
the selected project is done through the CK Metrics Calculator tool developed by Mauricio[18]. This
tool can extract a Java project into software metrics attributes. There are three architectural components
used in this tool, including CK, runner, and MetricsExecutor. CK is the main component that manages
the metrics collection process, starting from metrics initialization, file division based on memory
capacity, managing execution in each directory, and optimizing Java file analysis. The software metrics
data is in numeric form with the number as shown in table 3 below.

Table 3. Software metrics collection results

Project Name Total Commit Total Package

Jfreechart 4.226 1048
 Closure-compiler 19.514 2844
 Commons-math 7.229 1846
 Commons-lang 8.419 1097

Mockito 6.237 2089
 Total 8924

3.2. Data Preprocessing

Before training the data, pre-processing will be carried out on the dataset collected in the
previous stage. This pre-processing stage includes feature selection, data splitting, data balance analysis,
and missing value checking. After analyzing the data balance, it was found that the distribution of the
dataset was not balanced. Data imbalance between the two classes will allow overfitting to occur.
Therefore, to overcome the data imbalance, several imbalanced data handling scenarios are carried out.
There are several scenarios of handling imbalanced datasets used in the research including SMOTE
(Synthetic Minority Oversampling Techniques), SMOTE-Tomek Links, and stratified undersampling
techniques. The results when training the data show that the stratified undersampling technique produces
a more optimal evaluation performance value compared to the other techniques. After stratified
undersampling the data, the amount of new data obtained is 1314, with the distribution of clean classes
reaching 746 and buggy classes totaling 568.

3.3. Data Labeling

Table 4. The Results of Labeling Software Metrics Dataset
Project Name Number of Clean Number of Bugs

Jfreechart 80 27
 Closure-compiler 194 369
 Commons-math 140 66
 Commons-lang 81 63

Mockito 251 43
Total 746 568

Based on table 3 above, presents the outcome of labeling process applied accros 5 Java open

sources projects choosen in previous section. This step of labeling pipelines is identifying bug-fixing
commits by mining commit logs. Each project listed such as Jfreechart, Closure-compiler, etc underwent
the systematic process of identifying bug fixing commits. The labeling pipeline successfully
differentiated between of version code that are clean and those labeld as containing real bugs, which are
associated with valid bug-fixing patches. For instance, the Closure-compiler project shows the highest
number of identified bugs (369), which suggest that the version control and bug tracking records for
this project are rich and well-maintened. Although, a project like Jfreechart with only 27 labeeled bugs,
might have had fewer explicit bug references or less testable commit history.

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

98

3.4. Data Exploration
 This research applies the Exploratory Data Analysis methodology to gain a deeper

understanding of the dataset associated with the variables that determine whether or not a Java package
project has defects. This stage is very important to identify patterns, correlations, and characteristics of
a variable used in code quality analysis. This research uses multivariate correlation analysis to
understand the relationship between variables that affect the complexity and potential defects in the
code. Table 3 shows the statistical analysis results of each variable.

Table 5. Quantitative Analysis of Software Metrics Variables

Variable Min Mean Max
Cbo 0.00 4.88 1334.00
Dit 1.00 1.48 39.00

fanin 0.00 1.98 405.00
Fanout 0.00 4.89 134.00
Lcom 0.00+ee 4.41 1.49
Noc 0.00 0.16 226.00
Loc 1.00 77.88 5584.00
Rfc 0.00 11.66 545.00

Wmc 0.00 15.62 1758.00
totalMethodsQty 0.00 8.45 1733.00

protectedMethodsQtys 0.00 1.15 366.00
publicMethodsQty 0.00 5.65 1726.00
privateMethodsQty 0.00 0.84 233.00

finalFieldsQty 0.00 0.90 143.00
protectedFieldsQty 0.00 0.07 54.00

publicFieldsQty 0.00 0.20 189.00
privateFieldsQty 0.00 1.35 142.00

bugs 0.00 0.06 1.00

An explorative analysis of the software metrics dataset revealed various characteristics that

affect code complexity and quality. One of the main aspects of concern is Coupling Between Objects
(CBO), which has an average value of 4.88 with a range up to 1334.00. This high maximum value
indicates that some classes are highly dependent on other classes, which can increase system complexity
and make code maintenance difficult. In addition, the Depth of Inheritance Tree (DIT) has an average
of 1.48, with some classes reaching a depth of up to 39.00. Inheritance hierarchies that are too deep can
complicate understanding the code structure and make debugging and testing difficult. In addition to the
inheritance and dependency factors between classes, the analysis also showed that fan-in and fan-out
have a major influence on the connectedness between system components. An average fan-in of 1.98
indicates that methods in a class tend to be called by several other classes, while a fan-out that has an
average of 4.89 and a maximum of 134.00 indicates that a class is highly dependent on many other
classes. This extensive dependency increases the risk of code instability, as a small change to one class
can have a significant impact on other components it is associated with.

In addition, the lack of cohesiveness of methods (LCOM) metric, with an average of 4.41,
indicates that some classes have methods that are not very cohesive, meaning they work on different
parts of the class attributes. Low cohesion may indicate the need for refactoring to improve code
modularity. On the other hand, the number of lines of code in a class (LOC) varies from 1 to 5584, with
an average of 77.88, indicating that most classes are relatively small in size. However, some classes are
too large, which may hinder code readability and maintainability. Other complexity metrics, such as
Weighted Methods per Class (WMC), show that some classes have a very high number of methods, with
a maximum value of 1758.00 and an average of 15.62. The more methods in a class, the greater the
chance of errors due to increased complexity. This case is reinforced by the accessibility pattern of
methods in the class, where public methods (publicMethodsQty) have the highest average of 5.65, while
private methods (privateMethodsQty) are only about 0.84.

Classes that expose too many public methods can be more vulnerable to external changes and
increase the risk of errors. Analysis of the bugs variable shows that most of the classes in the dataset do
not have bugs, but there is a small percentage of classes that are prone to errors. This analysis indicates
that classes with high complexity, as indicated by high Cbo, Wmc, and fan-out, tend to have a greater

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

99

risk of containing bugs. By understanding this pattern, the next step is to identify complexity reduction
strategies, such as code refactoring, increasing modularity, and managing dependencies between classes
to improve overall software quality.
3.5. Correlation and Significance

The correlation matrix in Figure 3 below measures how strong the relationship is between two
variables. The correlation matrix ranges from -1 to 1. A positive value indicates a direct relationship
when one variable increases the other also increases. Whereas a negative value indicates that there is an
opposite relationship when one variable increases, the other will accordingly. From the matrix, it can be
seen that some matrices have a high correlation value with each other. For example, publicMethodsQty
has a very high correlation with privateMethodsQty (0.94), which indicates that the number of public
and private methods tend to increase simultaneously within a class. Similarly, totalMethodsQty has a
high correlation with protectedMethodsQty and privateMethodsQty, which makes sense since total
methods are the sum of different types of methods in a class.

Figure 3. Inter-variable Correlation Matrix

Metrics such as cbo (Coupling Between Objects) and wmc (Weighted Methods per Class) also

show a fairly high correlation (0.76), indicating that classes with high complexity tend to be more
connected to other classes. In addition, lcom (Lack of Cohesion of Methods) has a positive correlation
with fanout and fanin, meaning classes with less cohesive methods often have more dependencies on
other classes. Meanwhile, the bugs variable has low correlations with most code metrics, although there
is a slight relationship with wmc (0.16) and cbo (0.12), which could suggest that the more complex and
connected a class is, the more likely it is to have bugs. Overall, these correlations provide insight into
how code characteristics relate to each other. This can help developers understand how factors such as
complexity, cohesion, and number of methods can affect code quality and the potential for bugs.
3.6. Model Development

This research develops a prediction model to predict software defects in Java package projects.
The ensemble model build with tree-based algorithm as the base model, including Adaptive Boosting,
Random Forest, Extratrees, Histogram XGBoost, and Categorical Boosting. Furthermore, the results of
the data base model training will be integrated through ensemble stacking techniques with Random
Forest Regressor as a meta model to optimize prediction quality. This approach is expected to be able

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

100

to optimize the accuracy, precision, roc_auc, f1score and recall values which become the matrix for
determining model performance.
3.7. Random Forest

Random Forest uses hyperparameters that are tuned to achieve a balance between accuracy
and generalization. n_estimators=40 ensures a sufficient number of trees to improve prediction stability
without excessive computational cost. max_depth=4 limits the depth of the tree to avoid overcomplexity
and overfitting. min_samples_leaf=5 prevents the tree from being too specific to the training data.
criterion='gini' is used to measure the impurity of nodes in optimal data splitting. random_state=1
ensures consistent and reproducible results. This implementation of hyperparameter optimization makes
Random Forest more reliable in handling data variability with stable performance [30].
3.8. Extra Trees

The Extra Trees algorithm uses hyperparameters that are tuned for a balance between accuracy
and efficiency. n_estimators=30 ensures prediction stability without excessive computational cost.
max_depth=8 limits the depth of the tree to prevent overfitting, while min_samples_leaf=4 prevents too
specific splits. criterion='gini' is used for effective data splitting, and implementing gini for the criterion
paramater. This combination makes Extra Trees more resilient to data variance while maintaining high
accuracy.
3.9. Adaptive Boosting

AdaBoost or Adaptive Boosting is a classification algorithm that works iteratively by training
weak learners such as decision trees on a dataset and giving weight to each training instance based on
its classification. In the Adaptive Boosting algorithm, the hyperparameter tuning process is carried out
using five parameters including estimator = AdaBoostClassifier with n_estimators = 50 and
learning_rate =0. 1.
3.10. Gradient Boosting

Gradient Boosting uses several hyperparameters that have been adjusted to specific values to
achieve a balance between bias and variance in the model. n_estimators=100 was chosen because this
number is sufficient to capture patterns in the data without causing excessive overfitting. If it is too
large, the model can become too complex and lose its generalization ability. learning_rate=0.01 was
used because this value provides a good balance between stable convergence and learning speed.
min_samples_leaf=5 was chosen to ensure that each leaf of the tree has at least two samples, which
helps reduce the chance of the model overfitting the training data. max_depth=3 was used as this depth
is sufficient to capture non-linear patterns in the data without making the model too complex.
loss='exponential' was chosen to give more weight to hard-to-classify observations, similar to the
approach used in Adaboost, so that the model focuses more on hard-to-correct errors.
3.11. Histogram Gradient Boosting

Histogram Gradient Boosting is a boosting algorithm that groups data into histograms to
improve computational efficiency, especially on large datasets. In the hyperparameter tuning process,
several key parameters are used to control the performance of the model. max_iter=50 specifies the
maximum number of iterations or number of trees to be created, which affects the extent to which the
model learns from the data without causing overfitting. learning_rate=0.01 controls the speed, where
larger values speed up convergence but can sacrifice accuracy if too high. min_samples_leaf=5 sets the
minimum number of samples that should be present in each leaf of the decision tree, which helps reduce
overfitting by ensuring that each data division has enough observations. max_depth=3 sets the maximum
depth of the decision tree, which affects the complexity of the model as well as the balance between bias
and variance.
3.12. XGBoost

In the hyperparameter tuning process, several key parameters are used to optimize the model.
estimators=50 sets the number of trees in boosting, where a larger number can improve accuracy but
also increases the risk of overfitting. max_depth=4sets the maximum depth of the decision tree, which
affects the complexity of the model as well as the balance between bias and variance. learning_rate=0.01
controls the speed, where larger values speed up convergence but can sacrifice accuracy if too high.
With this combination of parameters, XGBoost is able to provide strong performance with a good
balance between speed and accuracy in the machine learning process.

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

101

3.13. Categorical Boosting
CatBoost is a gradient boosting algorithm optimized to handle categorical features efficiently.

In the hyperparameter tuning process, several key parameters are used to improve model performance.
n_estimators=50 determines the number of trees used in boosting, this value is optimal because the time
consumption during training is very low. loss_function='Logloss' is used for binary classification by
measuring the probability of prediction error. learning_rate=0.1 controls the learning speed, with higher
values speeding up convergence but may miss the optimal solution. depth=5 determines the maximum
depth of the decision tree, which affects the complexity of the model. min_data_in_leaf=1 sets the
minimum number of samples in each leaf to prevent overfitting. random_seed=1 ensures consistent and
reproducible results. Finally, logging_level='Silent' reduces log output during training to make the
process more concise. With this combination of parameters, CatBoost can produce more accurate and
efficient models in classification tasks.
3.14. Stacking

The Stacking Ensemble Learning technique aims to improve classification performance by
combining multiple base models and using meta models to produce more accurate final predictions. In
this approach, several machine learning algorithms are used as base models, including
RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier,
HistGradientBoostingClassifier, XGBClassifier, and CatBoostClassifie. Each of these models has
different characteristics in handling data patterns, so by combining them, the system can utilize the
advantages of each model.

Stacking Program Code
base_model_preds= []
for model in base_models:

model.fit(X_train_base, y_train_base)
pred = model.predict(X_train_meta)
base_model_preds.append(pred)

stacking_dataset= np.column_stack(base_model_preds)
meta_model = RandomForestRegressor()
meta_model.fit(stacking_dataset, y_train_meta)

Figure 4. Stacking Program Code

In the first part of the code in Figure 4, a `base_models` list is created to store all the models

used in the initial stacking stage. Then, an empty list `base_model_preds` is prepared to store the
prediction results of each base model. In the `for` loop, each model in `base_models` is trained using
the `X_train_base` and `y_train_base` datasets. After training, the model is used to make predictions on
the `X_train_meta` dataset, and the prediction results are stored in a list `base_model_preds`. This
process allows each model to provide an initial estimate of the class of the metadataset. After all the
base models have provided predictions, the next step is to combine all the predictions into one stacked
dataset using `np.column_stack(base_model_preds)`. This dataset has dimensions that match the
amount of data in `X_train_meta` but with features derived from the predictions of the various base
models. Thus, this dataset is no longer the original features but a representation of the decisions of the
various base models that have been trained previously. The final step in stacking is to train the meta-
model, which in this case is Logistic Regression. This model receives the stacked dataset
(`stacking_dataset`) as input and is trained using `y_train_meta`. The meta-model acts as a decision
maker that learns from the prediction patterns of the base models to make a more accurate final decision.
With this approach, the system is able to reduce the bias of one particular model and increase
generalization in classification.
3.15. Model Performance Evaluation

After performing the model building stages, the following are the results of evaluating the
model performance of the training base model and the final model using stacking.

Based on the model performance evaluation results in Table 6, several important things can
be obtained by comparing the performance of various models based on Accuracy, Precision, Recall, F1-
Score, and ROC AUC metrics. From the table, stacking has the best performance compared to other
models, with the highest Accuracy 0.8669, highest Precision 0.8712, highest Recall 0.8000, highest F1-
Score 0.8341, and highest roc_auc score 0.8575. This result shows that stacking is able to improve

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

102

classification performance well compared to other basic models. In further analysis, the highest
Accuracy was achieved by stacking with a value of 0.8669, while the lowest was Histogram Gradient
Boosting with a value of 0.8098. This number indicates that stacking is able to combine the strengths of
several base learner models to produce more accurate predictions. At the same time, Histogram Gradient
Boosting has the lowest Accuracy, possibly because this model is too sensitive to data that is difficult
to classify and tends to experience overfitting on noise in the dataset.

Table 6. Training Results of SDP Base Model and Learner Model

Matrix
Evaluation

Random
Forest

Extra
Trees

Adaptive
Boosting

Gradient
Boosting

Histogram
Gradient
Boosting

XGBoosting Categorical
Boosting

Stacking

Accuracy 0.8365 0.8403 0.8441 0.8212 0.8098 0.8250 0.8403 0.8669
Precision 0.8190 0.8541 0.8415 0.8181 0.8061 0.8200 0.8469 0.8712

Recall 0.7818 0.7454 0.7727 0.7363 0.7181 0.7400 0.7545 0.8000
F1Score 0.8000 0.7961 0.8056 0.7751 0.7596 0.7809 0.7980 0.8341
Roc_auc 0.8288 0.8269 0.8340 0.8093 0.7969 0.8139 0.8282 0.8575

In the precision metric, stacking also shows the highest value of 0.8712, while Histogram

Gradient Boosting has the lowest Precision of 0.8061. The high Precision of stacking indicates that this
model produces fewer false positives than other models, which means it is better at avoiding the
misclassification of negative classes. In contrast, the low Precision of adaptive boosting indicates that
this model more often misclassifies negative classes as positive. The highest Recall is also achieved by
stacking with a value of 0.8000, while the lowest is Histogram Gradient Boosting with a value of 0.7181.
This number shows that stacking is able to capture almost all instances of the positive class, which is
very important in scenarios where a mistake in detecting the positive class can have a big impact, such
as in fraud detection. The low Recall of adaptive boosting indicates that the model more often fails to
detect the positive class, resulting in many false negatives. In terms of F1-Score, stacking again shows
the highest performance with a value of 0.8341, while adaptive boosting has the lowest value of 0.7586.
The high F1-Score of stacking shows that this model has a good balance between Precision and Recall,
which means that it is able to detect positive classes well while keeping the number of false positives
low. In contrast, the low F1-Score in adaptive boosting indicates that the model is not optimal enough
in handling the imbalance between Precision and Recall.

In the ROC AUC metric, stacking has the highest value of 0.8575, while Histogram Gradient
Boosting has the lowest value of 0.7969. The high ROC AUC of categorical boosting and stacking
indicates that these two models have a good ability to distinguish between positive and negative classes
at various classification thresholds. In contrast, the low ROC AUC in Histogram Gradient Boosting
indicates that this model has poorer discrimination ability than the other models, making it more difficult
to distinguish between positive and negative classes well. The superiority of stacking in almost all
evaluation metrics indicates that it is able to combine the strengths of various weak classifiers and utilize
meta-learner models to produce more accurate decisions. It can mitigate the weaknesses of a single
model that may be overly biased towards specific patterns in the data. In addition, stacking is also able
to lift the performance of weak models by combining the outputs of several models so that the
advantages of another model can compensate for the weaknesses of one model. In terms of bias and
variance, stacking reduces the bias that may occur in decision tree-based models such as random forest
or extra trees. It reduces the high variance in boosting models such as XGBoost or adaptive boosting. In
this way, stacking can produce more stable and accurate predictions.

 In addition, stacking is more resistant to noise in the dataset because it uses a variety of
different approaches to handle the data, making it more difficult for noise to cause significant
classification errors. Based on the evaluation results of these models, stacking is the best model to use
for classification in this system, as it has the highest Accuracy, Precision, Recall, F1-Score, and ROC
AUC compared to other models. Based on these results, the use of stacking is highly recommended for
this classification scenario, especially if the main goal is to maximize Accuracy and ensure a balance
between Precision and Recall.
3.16. Statistical Test

The statistical test of this research is based on ROC AUC (Receiver Operating Characteristic
- Area Under Curve) as the primary performance metric. ROC AUC is widely recommended in the

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

103

domain of software defect prediction due to its ability to effectively handle class imbalance, such as the
disparity between bug and non-bug instances, and its independence from classification thresholds.
Unlike accuracy, which may be misleading in imbalanced datasets, ROC AUC offers a comprehensive
measure of a model's ability to distinguish between defective and non-defective instances, making it a
more reliable and informative metric in this context.

To enhance the robustness of the evaluation, the statistical testing is conducted using k-fold
cross-validation with k = 5. This method partitions the dataset into five folds, where each model is
iteratively trained on four folds and tested on the remaining one. The ROC AUC scores obtained from
each fold serve as the input for the statistical tests. This cross-validation strategy reduces the risk of
overfitting and ensures that the comparative analysis reflects consistent model performance across
different data partitions.

Tabel 8. Shapiro Wilk Normality Test

Algorithm Wilk Test P-Value Interpretation
RF 0.8645 0.2449 Normal
ET 0.9329 0.6160 Normal

AdaBoost 0.9240 0.5559 Normal
GBoost 0.9779 0.9232 Normal
HGB 0.9303 0.5983 Normal

XGBoost 0.9472 0.7169 Normal
CatBoost 0.7883 0.0648 Normal
Stacking 0.9283 0.5845 Normal

To validate the hypothesis disccussed in previous section, this research conduct Shapiro-Wilk

Normality Test and Paired T-Test. These statistical tests are conducted to assess the normality of data
distribution and to determine whether the performance difference among the algorithms are statistically
significant. The shapiro Wilk test examines whether the performance score for each algorithm follow a
normal distribution, which is an critical assumption for applying the paired t-test. As shown in the table
8, all algorithms have p-values greater than 0.05, indicating that their performance distributions do not
significantly deviate from normal. Therefore, it can be interpret that the performance scores of each
algorithm are normally distributed, validating the use of he paired t-test in the further step.

Tabel 9. Comparing Stacking with Other Algorithms with Paired T-Test

Algorithm Mean Difference T-Test P-Value Interpretation
RF +0.0122 3.7384 0.0201 Significant
ET +0.0391 8.7400 0.0009 Significant

AdaBoost +0.0187 4.2677 0.0130 Significant
GBoost +0.0411 6.4345 0.0030 Significant
HGB +0.0387 5.7926 0.0044 Significant

XGBoost +0.0197 2.8450 0.0466 Significant
CatBoost +0.0338 5.4142 0.0056 Significant

The paired t-test was conducted to statistically compare the performance of the Stacking

ensemble method against each of the other algorithms. T-test indicated the size of difference relative to
the variation in the data. The larger the t-statistic, the more likely the means are different. Based the
results on table 9, shows that each model comparisons yield p-values below 0.05, indicating that the
differences in performance between stacking and each of the other models are statistically significant.
However, statistical significance alone does not imply that stacking performs better—it is also essential
to examine the direction of the performance differences.

For instance, the largest mean difference is observed between Stacking and Gradient Boosting
(+0.0411), supported by a strong t-statistic of 6.4345 and a p-value of 0.0030, confirming that the
improvement is statistically significant. Similarly, comparisons with Extra Trees (+0.0391), Histogram
Gradient Boosting (+0.0387), and CatBoost (+0.0338) also show notable performance gains, each with
p-values well below the 0.01 threshold, further supporting the robustness of the results.

Even the smallest observed mean difference, between Stacking and Random Forest (+0.0122),
yields a t-statistic of 3.7384 and a p-value of 0.0201, which still meets the standard criterion for statistical
significance (p < 0.05). This pattern holds across all comparisons: despite varying magnitudes of
improvement, every p-value falls below 0.05, confirming that the performance improvements of the
Stacking model are not due to random chance.

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

104

From the results determine that Stacking outperforms all the individual algorithms tested, with
the differences being statistically significant. These findings are valuable as they support the use of
ensemble methods like Stacking to combine the strengths of multiple base learners, leading to improved
predictive performance. Moreover, since the normality assumption is satisfied, the statistical inference
made from the paired t-test is reliable. This emphasizes that model selection should not only rely on
average performance but also consider statistical validation to ensure robust conclusions.
3.17. Confusion Matrix

Confusion Matrix reflects four main metrics including True Positive (predicted true, actual
true), True Negative (predicted false, actual false), False Positive (predicted true, actual false), and False
Negative (predicted false, actual false). which give an indication of how the model classifies positive
and negative classes in the test data. The following in table 6 is the result of the calculation of confusion
metrics from all base learner algorithms and learner models.

Table 7. Confusion Matrix of Base Model and Learner Model SDP

Confusion Matrix RF ET AdaBoost GBoost HGB XGBoost CatBoost Stacking

True Positive 86 82 85 81 79 82 83 88
True Negative 134 139 137 135 134 135 138 140
False Positive 19 14 16 18 19 18 15 13
False Negative 24 28 25 29 31 28 27 22

Based on Table 7, the Stacking model shows the best performance, with the highest number

of True Positives of 88, compared to other models such as Random Forest (86), AdaBoost (85),CatBoost
(83), XGBoost (82), Extra Trees (82), Gradient Boosting (81), and the lowest is Histogram Gradient
Boosting (79). This results indicates that Stacking is able to recognize positive classes better than other
models. The ability to detect True Negative (TN) is also highest in the Stacking model (140), which
means that this model is more accurate in classifying negative data correctly, followed by Extra Trees
and CatBoost, which each have TN of 139 and 138. In contrast, the Random Forest and Histogram
Gradient Boosting model has the lowest TN (134), indicating that it more often misclassifies negative
data as positive.

In addition, the classification error measured by False Positive (FP) and False Negative (FN)
shows that the Random Forest and Histogram Gradient Boosting model has the highest error rate, with
FP of 19. This result indicates that the model more often misclassifies negative data as positive (False
Positive) and fails to recognize the positive class (False Negative) correctly. In contrast, the Stacking
model has the lowest misclassification rate, with an FP of only 13 and an FN of 22, which means it
makes the fewest errors in identifying both classes.

Based on this analysis, Stacking is the optimal model for handling classification because it has
high TP and TN and low FP and FN, resulting in better accuracy than other models. The Extra trees
model is also a strong choice, as it performs close to Stacking with a low error rate. If computational
complexity is a consideration, models such as AdaBoost and CatBoost can be an alternative, as they still
have a good balance between accuracy and efficiency. In contrast, the Histogram Gradient Boosting
model shows the weakest performance, as it has the highest number of misclassifications in both FP and
FN, making it less recommended in this classification scenario.

4. CONCLUSION

The implementation of AI-driven testing in software testing provides a more efficient and
accurate solution compared to manual testing. By utilizing machine learning (ML)-based approaches—
particularly bug prediction through the Stacking Ensemble Model—this study demonstrates that
software defects can be identified at earlier stages of the Software Development Life Cycle (SDLC).
This early detection enables better resource management, reduces post-release maintenance costs, and
enhances overall software quality. A total of 8,924 data points were collected from five different Java
projects. Since the dataset was imbalanced, an undersampling technique was applied to address class
distribution issues and improve model performance. During data preprocessing, steps such as data
cleaning, normalization, and undersampling were carried out. After these processes, the remaining
dataset consisted of only 1,314 data points, with a distribution of 746 clean instances and 568 buggy

Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r

Predicting Software Defects at Package Level in Java Project Using Stacking (Nabila Athifah Zahra)

105

instances. This research applies the Stacking Ensemble approach to improve the accuracy of software
defect prediction using software metrics from open-source projects on GitHub. The model is developed
in two stages: base learner (level-0) using AdaBoost, Random Forest (RF), Extra Trees (ET), Gradient
Boosting (GB), Histogram-based Gradient Boosting (HGB), XGBoost (XGB), and CatBoost (CAT)
algorithms, and a learner model (level-1) that optimizes the results with ensemble stacking techniques.
Based on the model evaluation results, the Stacking Model outperforms other individual models. With
an ROC-AUC score of 0.8575, the model proves to be more reliable in distinguishing between defective
and non-defective software. Additionally, the stacking approach improves the performance of weaker
classifiers such as Histogram Gradient Boosting. Therefore, the findings of this study confirm that
combining multiple models through ensemble stacking yields a more robust and balanced classification
system compared to using a single model. A paired t-test confirmed that the Stacking model’s
performance improvements over individual models are statistically significant, with all p-values below
0.05. The most notable gain was against Gradient Boosting (+0.0411, p = 0.0030), and even the smallest
improvement remained significant. These results, supported by normality assumptions, validate the
robustness and reliability of the Stacking approach. By leveraging various ensemble techniques, the
model effectively minimizes prediction errors and enhances the accuracy of software defect detection.
Future development of AI-driven testing models may involve testing on more diverse datasets and
applying more comprehensive hyperparameter optimization to further improve performance. Moreover,
integrating this predictive model into the Continuous Integration/Continuous Deployment (CI/CD)
pipeline can support automation in the testing process and significantly improve software development
efficiency.

ACKNOWLEDGEMENTS

The author would like to thank the research supervisor at the department of information
systems, faculty of computer science, Universitas Pembangunan Nasional Veteran Jawa Timmur for
valuable support to complete this research.

REFERENCES
[1] C. Deming, M. A. Khair, S. R. Mallipeddi, and A. Varghese, “Software Testing in the Era of AI: Leveraging Machine

Learning and Automation for Efficient Quality Assurance,” Asian J. Appl. Sci. Eng., vol. 10, no. 1, pp. 66–76, 2021,
doi: 10.18034/ajase.v10i1.88.

[2] G. Singh, “A Study on Software Testing Life Cycle in Software Engineering,” Int. J. Soft Comput. Eng., vol. 9, no. 2,
pp. 1–5, 2018.

[3] O. J. Amman Paul, Introduction to Software Testing. Cambridge Press, 2017. [Online]. Available:
https://books.google.co.id/books?hl=id&lr=&id=bQtQDQAAQBAJ&oi=fnd&pg=PR9&dq=Introduction+to+Softwar
e+Testing&ots=fA6P213_pQ&sig=vTKZfwwNJMsYUzib1KSgQ-TjRDI&redir_esc=y#v=onepage&q&f=false

[4] V. H. S. Durelli et al., “Machine learning applied to software testing: A systematic mapping study,” IEEE Trans.
Reliab., vol. 68, no. 3, pp. 1189–1212, 2019, doi: 10.1109/TR.2019.2892517.

[5] U. Subbiah, M. Ramachandran, and Z. Mahmood, “Software engineering approach to bug prediction models using
machine learning as a service (MLaaS),” ICSOFT 2018 - Proc. 13th Int. Conf. Softw. Technol., no. Icsoft, pp. 879–887,
2019, doi: 10.5220/0006926308790887.

[6] R. R. Saputra, E. Setiawan, and A. Ambarwati, “Manajemen Risiko Teknologi Informasi Menggunakan Metode
OCTAVE Allegro pada PT . Hakiki Donarta Surabaya,” vol. 17, no. 1, pp. 1–10, 2019.

[7] A. Pandey, S. Maddula, G. P. Kumar, S. K. Shailendra, and K. Mudaliar, “A Comprehensive Analysis of Ensemble-
based Fault Prediction Models Using Product , Process , and Object-Oriented Metrics in Software Engineering,” no.
December 2023, 2024, doi: 10.5281/zenodo.10464708.

[8] A. O. Balogun, A. O. Bajeh, V. A. Orie, and A. W. Yusuf-Asaju, “Software Defect Prediction Using Ensemble
Learning: An ANP Based Evaluation Method,” FUOYE J. Eng. Technol., vol. 3, no. 2, 2018, doi:
10.46792/fuoyejet.v3i2.200.

[9] R. Malhotra, S. Chawla, and A. Sharma, Software defect prediction using hybrid techniques: a systematic literature
review, vol. 27, no. 12. Springer Berlin Heidelberg, 2023. doi: 10.1007/s00500-022-07738-w.

[10] D. Gray, “Why Does Java Remain So Popular?,” blogs.oracle.com, 2019.
https://blogs.oracle.com/oracleuniversity/post/why-does-java-remain-so-popular

[11] M. Crouse, “TIOBE Index for November 2024: Top 10 Most Popular Programming Languages,” 2024.
https://www.techrepublic.com/article/tiobe-index-language-rankings/ (accessed Nov. 25, 2024).

[12] A. Alazba and H. Aljamaan, “Software Defect Prediction Using Stacking Generalization of Optimized Tree-Based
Ensembles,” Appl. Sci., vol. 12, no. 9, 2022, doi: 10.3390/app12094577.

[13] Y. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi, “Ensemble of software defect predictors: An AHP-based evaluation
method,” Int. J. Inf. Technol. Decis. Mak., vol. 10, no. 1, pp. 187–206, 2011, doi: 10.1142/S0219622011004282.

[14] M. A. Ihsan Aquil, “Predicting Software Defects using Machine Learning Techniques,” Int. J. Adv. Trends Comput.

 r ISSN: 2721-3056

International Journal of Advances in Data and Information Systems, Vol. 6, No. 1, April 2025 : 90 – 106

106

Sci. Eng., vol. 9, no. 4, pp. 6609–6616, 2020, doi: 10.30534/ijatcse/2020/352942020.
[15] M. Ali et al., “Software Defect Prediction Using an Intelligent Ensemble-Based Model,” IEEE Access, vol. 12, pp.

20376–20395, 2024, doi: 10.1109/ACCESS.2024.3358201.
[16] and B. H. Wang, Wenfeng, Jingjing Zhang, “Meta-learning with Logistic Regression for Multi-classification,” in New

Approaches for Multidimensional Signal Processing: Proceedings of International Workshop, Singapore: Springer
Singapore, 2022. doi: https://doi.org/10.1007/978-981-16-8558-.

[17] J. Xu, F. Wang, and J. Ai, “Defect Prediction with Semantics and Context Features of Codes Based on Graph
Representation Learning,” IEEE Trans. Reliab., vol. 70, no. 2, pp. 613–625, 2021, doi: 10.1109/TR.2020.3040191.

[18] Maurício Aniche, “Java Code Metrics Calculator (CK Metrics),” 2015.
[19] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato, and N. Ziviani, “Understanding machine learning software defect

predictions,” Autom. Softw. Eng., vol. 27, no. 3–4, pp. 369–392, 2020, doi: 10.1007/s10515-020-00277-4.
[20] G. Gay and R. Just, “Defects4J as a Challenge Case for the Search-Based Software Engineering Community,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12420 LNCS, no.
Section 2, pp. 255–261, 2020, doi: 10.1007/978-3-030-59762-7_19.

[21] C. S. . Pasareanu and D. Marinov, “Just, R., Jalali, D., & Ernst, M. D. (2014, July). Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In Proceedings of the 2014 international symposium on
software testing and analysis (pp. 437-440).,” pp. 2–5, 2014.

[22] Y. Yao, Z. Xiao, B. Wang, B. Viswanath, H. Zheng, and B. Y. Zhao, “Complexity vs. performance,” no. 119, pp. 384–
397, 2017, doi: 10.1145/3131365.3131372.

[23] I. Q. U. Fatwa Ramdani, Pengantar Data Science. Jakarta: Bumi Aksara, 2022.
[24] E. Ronchieri, M. Canaparo, and M. Belgiovine, Software Defect Prediction on Unlabelled Datasets: A Comparative

Study, vol. 12250 LNCS. Springer International Publishing, 2020. doi: 10.1007/978-3-030-58802-1_25.
[25] A. A. Ibrahim, R. L. Ridwan, M. M. Muhammed, R. O. Abdulaziz, and G. A. Saheed, “Comparison of the CatBoost

Classifier with other Machine Learning Methods,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 11, pp. 738–748, 2020,
doi: 10.14569/IJACSA.2020.0111190.

[26] Guryanov, “Histogram-Based Algorithm for Building Gradient Boosting Ensembles of Piecewise Linear Decision
Trees,” Anal. Images, Soc. Networks Texts, vol. 11832, pp. 39–50, 2019, doi: https://doi.org/10.1007/978-3-030-37334-
4_4.

[27] G. Santos, E. Figueiredo, A. Veloso, M. Viggiato, and N. Ziviani, “Predicting Software Defects with Explainable
Machine Learning,” ACM Int. Conf. Proceeding Ser., 2020, doi: 10.1145/3439961.3439979.

[28] Z. Faska, L. Khrissi, K. Haddouch, and N. El Akkad, “A robust and consistent stack generalized ensemble-learning
framework for image segmentation,” J. Eng. Appl. Sci., vol. 70, no. 1, pp. 1–20, 2023, doi: 10.1186/s44147-023-00226-
4.

[29] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Min., vol. 13-17-Augu, pp. 785–794, 2016, doi: 10.1145/2939672.2939785.

[30] S. K. Palaniswamy and R. Venkatesan, “Hyperparameters tuning of ensemble model for software effort estimation,” J.
Ambient Intell. Humaniz. Comput., vol. 12, no. 6, pp. 6579–6589, 2021, doi: 10.1007/s12652-020-02277-4.

