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 Corrosion is a major challenge affecting various industrial sectors, leading to 
increased operational costs and decreased equipment efficiency. The use of 
organic corrosion inhibitors is one of the promising solutions. This study 
applies an ensemble algorithm with a stacking method to estimate 
pyridazine-derived compounds corrosion inhibition efficiency. This study 
utilized various molecular characteristics of pyridazine compounds as inputs 
to predict inhibition efficiency values. After evaluating several boosting 
models, the stacking technique was chosen as it showed the best results. 
Stacking Model 6, which combines XGB, LGBM, and CatBoost as the base 
model with Random Forest as the meta-model, produced the most accurate 
prediction with an RMSE of 0.055. These findings indicate that machine 
learning approaches can effectively and efficiently predict corrosion inhibitor 
performance. This method offers a faster and more economical alternative to 
conventional experimental methods. 
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1. INTRODUCTION 

Corrosion is a serious problem many industries face, leading to increased production and 
maintenance costs and decreased equipment efficiency [1]. Factors such as water, moisture, acidic 
materials, oil, and high-acidity gases are corrosion triggers [2]. Corrosion can lead to decreased 
metal thickness, potentially serious structural damage, stress corrosion cracking, decreased 
mechanical strength, and even sudden material failure [3]. The impact of corrosion is significant on 
economic and operational costs [4]. 

The use of inhibitors, especially those based on organic compounds, is becoming an 
increasingly popular solution due to their effectiveness and environmental friendliness. 
Heterocyclic derivatives such as benzotriazoles have demonstrated promising protective 
capabilities against industrial metals, particularly copper and its streams [5]. Nonetheless, large-
scale implementation of these compounds still faces several obstacles, including limited thermal 
resistance and economic considerations related to the manufacturing process [6]. Despite these 
challenges, the development trend of organic inhibitors continues, driven by their advantages in 
terms of environmental compatibility and corrosion inhibition efficiency (IE). Organic compounds 
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can form a protective film on metal surfaces, preventing direct contact with corrosive agents. 
Pyridazine-derived compounds show great potential as corrosion inhibitors [7]. 

To address the complexity of estimating corrosion inhibitor effectiveness, implementing 
advanced machine learning methods, specifically stacking techniques offers the potential to 
produce more comprehensive and accurate solutions. This research focuses on stacking boosting 
machine learning models to provide more accurate prediction results than single models in the 
context of corrosion inhibitor performance prediction. 

Stacking models offer a new perspective in predicting corrosion inhibition effectiveness for 
pyridazine-derived compounds, an approach that still needs to be applied in this field. The model 
aims to identify the most effective predictions in assessing corrosion inhibition ability by 
integrating various machine learning algorithms [8]. The advantage of this method lies in its ability 
to combine the strengths of multiple models while mitigating individual weaknesses, potentially 
optimizing estimation accuracy [9]. The study also included an in-depth analysis of molecular 
characteristics, opening up a broader understanding of the correlation between a compound's 
structure and its corrosion-inhibiting ability. The results showed that the combination of stacking 
models consistently yielded higher prediction accuracy than single models, promising more 
accurate and reliable estimates than previous methods. Thus, this research contributes significantly 
to developing more sophisticated corrosion inhibition prediction methods and paves the way for 
further applications of advanced machine learning techniques in materials science and applied 
chemistry. 

The importance of this research lies in the faster and cost-effective solution compared to 
traditional experimental methods that require significant time, cost, and resources. Utilizing 
Machine Learning technology, particularly the stacking boosting model, enables more efficient and 
effective evaluation and prediction of corrosion inhibitor performance, which can ultimately 
support the development of new, more corrosion-resistant materials [10]. 

Combining the advantages of stacking ensemble models and comprehensive feature 
analysis, this research is expected to produce more accurate and reliable estimates than previous 
methods. The results of this research contribute significantly to the development of more advanced 
corrosion inhibition prediction methods and pave the way for further applications of advanced 
machine learning techniques in materials science and applied chemistry. 
 
2. RESEARCH METHOD 

This research applies a four-stage framework to analyze corrosive substances in 
compounds. This methodological approach aims to understand the components that affect 
compounds and develop accurate prediction models. Each stage has specific objectives to improve 
the overall success of the research. Details of the research framework are presented in Figure 1. 

 

 
Figure 1. Research Method 
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2.1.  Data Collection 
The dataset comprises 120 pyridazine compounds with quantum molecular properties as 

features (independent variables) and IE values as targets (dependent variables) [11]. Among these 
properties, the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular 
Orbital (LUMO) are critical as they determine the electronic structure of the compounds. HOMO 
represents the highest energy level of electrons that can be removed, indicating the molecule's 
electron-donating ability. At the same time, LUMO signifies the lowest energy level that can accept 
electrons, reflecting its electron-accepting potential. The gap energy (ΔE), defined as the difference 
between the HOMO and LUMO energies, is a vital descriptor of molecular stability and 
reactivity—lower ΔE values generally correlate with increased reactivity. The dipole moment (μ) 
quantifies the molecule's polarity, influencing its interactions with solvents and biological targets, 
significantly impacting its IE. Ionization potential (I) and electron affinity (A) provide insight into 
the energies required for removing or adding electrons. high ionization potential suggests excellent 
stability, whereas high electron affinity indicates a stronger tendency to accept electrons. 
Electronegativity (χ) reflects the capacity of an atom to attract electrons within a bond, impacting 
the distribution of electronic density and, thus, the reactivity of the compound. Global hardness (η) 
and global softness (σ) are related descriptors that measure the molecule’s resistance to change in 
electron distribution. Greater hardness signifies lower reactivity, whereas increased softness 
suggests a greater propensity for chemical interaction. The electrophilicity index (ω) encapsulates 
the molecule's overall ability to act as an electrophile, derived from ionization potential and 
electron affinity, offering insights into its reactivity. Finally, the fraction of transferred electrons 
(ΔN) indicates the extent of electron transfer in chemical reactions, providing a quantitative 
measure of the interaction dynamics between the pyridazine compounds and potential targets. 
These quantum molecular descriptors offer a comprehensive framework for understanding the 
electronic properties that govern the IE of pyridazine compounds in various chemical and 
biological contexts [12]. 
 
2.2.  Data Preprocessing 

The steps illustrated in Figure 1 are crucial for data preparation before regression model 
implementation. The data pre-processing procedure includes a series of essential techniques to 
ensure the integrity and reliability of the dataset to be used in regression modelling [13]. 

 
2.2.1 Exploration Data Analysis 

The Exploratory Data Analysis (EDA) implemented in this study is a crucial phase that 
involves a comprehensive set of analytical procedures. The main objective is to acquire a 
comprehensive understanding of the distribution characteristics of variables, detection of outlier 
values, and evaluation of correlations between variables in the data set [14]. EDA plays a vital role 
in uncovering hidden patterns and trends that may go unnoticed through surface analysis [15]. The 
importance of EDA lies in its ability to identify elements that could affect the performance of the 
predictive model to be built [16]. Through this methodology, researchers can gain a more detailed 
insight into the intrinsic structure of the data, which in turn contributes to the development of 
models with higher precision and reliability. 
 
2.2.2 Transformation 

The dependent variable was transformed logarithmically to address non-normality and 
stabilize variance, a common approach in regression analysis [17]. For the independent variables, 
transformation methods were selected based on skewness analysis of their data distributions. This 
process ensures that the relationship between predictors and the response variable remains accurate 
and minimally distorted [18]. This study aims to optimize model performance, improve predictive 
accuracy, and build a robust, generalizable model that offers deeper insights into the phenomenon 
under investigation by following a structured pre-processing approach grounded in statistical 
principles. 
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2.3.  Model Development 
This research implements an advanced stacking technique, combining three leading 

boosting algorithms: Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting 
(XGB) and CatBoost. Each algorithm is optimized through an extensive hyperparameter tuning 
process, resulting in two best models for each algorithm. These six models were then integrated 
into a stacking structure, where their outputs were used as inputs for a Random Forest-based meta-
model. The main evaluation metric used is the Root Mean Square Error (RMSE), a key indicator in 
the optimization process and model performance evaluation. RMSE was chosen for its ability to 
measure the deviation of the prediction from the true value, providing a comprehensive picture of 
the model's accuracy [19]. This approach utilizes each boosting algorithm's strengths and optimizes 
the generalization ability through the combination of predictions made by Random Forest. The 
main goal of this methodology is to produce a more accurate and robust predictive model capable 
of outperforming traditional approaches in handling data complexity and variability [20]. 

 
2.3.1  Boosting 

Boosting is a powerful ensemble learning technique in machine learning designed to 
improve the predictive accuracy of models by combining multiple weak learners into one strong 
learner [21]. The basic principle is to build a series of models sequentially, where each subsequent 
model attempts to correct the mistakes made by the previous model [22]. In this process, boosting 
pays more attention to data instances that are difficult to predict, allocating higher weights to cases 
that the previous model misclassified. 

 
2.3.2  Light Gradient Boosting Machine (LGBM) 

Light Gradient Boosting Machine (LGBM), introduced by Guolin Ke, is designed to 
improve computational efficiency and scalability, even for smaller datasets [23]. While its key 
innovations, such as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB), are particularly beneficial for large-scale datasets, LGBM also excels in handling smaller 
datasets due to its ability to optimize resource usage and maintain high accuracy. LightGBM uses a 
leaf-wise tree growth approach, allowing for more complex modelling while being computationally 
efficient. These advantages make LightGBM suitable for small-scale data analysis, providing 
accurate results within time and resource constraints, even with a small dataset. 

 
2.3.3  Extreme Gradient Boosting (XGB) 

Extreme Gradient Boosting (XGB), developed by Chen and Guestrin in 2016, is an 
optimized implementation of the gradient-boosting algorithm [24]. Its main advantages lie in 
applying effective regularization to reduce overfitting and parallelization capabilities that improve 
computational efficiency. XGB performs superiorly in various data science competitions and 
industrial applications. Mathematically, XGB seeks to minimize the loss function L in the training 
data by incrementally adding decision tree models fk to boost iterations. At each iteration t, a new 
model is added to correct the prediction error of the previous model, enabling progressive 
improvement in prediction accuracy. 

 
2.3.4  Category Boosting (CatBoost) 

Category Boosting (CatBoost), developed by Prokhorenkova, is designed to handle 
categorical data effectively [25]. It uses ordered boosting techniques to minimize prediction bias 
and automatically generate combinations of categorical features. CatBoost's main advantage lies in 
its ability to handle categorical variables without manual pre-processing, making it an optimal 
choice for datasets dominated by categorical features. This is particularly beneficial in various 
research domains, such as consumer behaviour analysis, natural language processing, and health 
data analysis, where categorical variables are often a key component in modelling. 

 
2.3.4  Stacking 

Figure 2 illustrates the stacking ensemble method employed in this study, where 
predictions from six optimized models—LGBM1, LGBM2, XGB1, XGB2, CatBoost1, and 
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CatBoost2—are combined. To achieve better prediction performance, these models were fine-tuned 
using cross-validation and hyperparameter optimization via Optuna. 

 

 
Figure 2. Stacking Regressor Framework Utilizing LGBM, XGB, and CatBoost Models with Random Forest 

as the Meta-model 
 

2.4  Leave One Out Cross Validation  
The selection of Leave-One-Out (LOO) Cross-Validation in this study is motivated by the 

relatively small dataset comprising 120 observations, making it a highly suitable choice for 
maximizing the use of available data [26]. In LOO, each observation serves as a validation set one 
time, while the remaining data points are utilized to train the model [27]. This approach ensures 
that the model is trained and tested on nearly the entire dataset, thereby minimizing the potential 
loss of valuable information if a significant portion of the data were allocated solely for training 
purposes [28]. This phenomenon occurs when the model becomes overly tailored to the training 
data, diminishing its ability to generalize effectively to new data. LOO unique methodology allows 
each observation to contribute meaningfully to model training while retaining all data for 
evaluation, thereby enhancing the accuracy and reliability of performance estimates [29]. 
Consequently, utilizing LOO not only bolsters the validity of the findings in this study but also 
provides a more nuanced understanding of the model's performance when dealing with limited 
data. As a result, LOO is an effective tool for ensuring that the developed model is robust and 
reliable, facilitating sound decision-making based on data-driven insights in practical applications. 

 
2.5  Model Evaluation 

In regression model evaluation, RMSE is one of the important evaluation metrics. RMSE 
measures the root mean square error between the value predicted by the model and the actual value, 
with a lower RMSE indicating better model performance [30]. Although accuracy is not used in the 
context of regression as in classification, RMSE gives an idea of how close the model predictions 
are to the actual values [31]. Given the relatively small dataset in this study, the focus is primarily 
on prediction accuracy through RMSE, as computation time is less of a concern in this context. 
Regression model evaluation aims to select the most efficient and accurate model by considering 
various performance aspects and specific application needs. 
 
3. RESULTS AND DISCUSSION 

This study investigated various ensemble algorithms comprehensively to identify the 
optimal predictive model for IE of pyridazine-derived compounds. The selection process began 
with an extensive evaluation of various ensemble algorithms in the context of regression. Based on 
the performance analysis using the RMSE metric, three superior ensemble models were selected, 
and two models with different parameters were chosen for each algorithm. The algorithms that 
demonstrated superior performance and were selected for further analysis were LGBM, XGB, and 
CatBoost. This selection was based on the ability of each algorithm to optimize the accuracy of IE 
prediction, which is a crucial parameter in characterizing the effectiveness of pyridazine-based 
corrosion inhibitors. 
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3.1.  Overview 
This research applied the EDA methodology to gain a more comprehensive understanding 

of the dataset relating to corrosion rates in pyridazine compounds. This is a significant stage in the 
data analysis, as it allows researchers to identify the relevant variables' patterns, correlations, and 
key characteristics. The study was initiated with multivariate correlation analysis, a fundamental 
step in understanding the structure and interrelationships in the dataset. In the context of research 
into the corrosion phenomena of pyridazine compounds, this analysis will explore significant 
relationships between variables to reveal key factors that influence the corrosion process. 

 
Table 1. Descriptive Statistics 

Variable Min Mean Max 
HOMO -7.945 -6.132 -4.477 
LUMO -4.655 -1.848 6.294 

gap energy 1.897 4.289 13.536 
dipole moment 0.847 4.599 13.371 

ionization potential 4.477 6.136 7.945 
electron affinity -6.294 1.848 4.655 
electronegativity 0.429 3.992 5.971 
global hardness 0.949 2.147 6.768 
global softness 0.148 0.536 1.054 
electrophilicity -1.212 1.827 16.298 

fraction of transferred electrons -0.012 0.444 0.851 
 
Descriptive statistical analysis of corrosion-relevant variables in pyridazine compounds 

revealed significant characteristics. The HOMO and LUMO values showed asymmetric 
distributions. HOMO values ranged from -7.945 to -4.477, with a mean of -6.132, indicating that 
while some compounds exhibit lower HOMO energies, which suggests a more vital ability to 
donate electrons, others have higher energies that may limit their reactivity. In contrast, LUMO 
values displayed more significant variability, ranging from -4.655 to 6.294, with a mean of -1.848. 
A higher LUMO value generally indicates an increased ability to accept electrons, critical in 
determining a compound's electrophilic nature. When LUMO values are high, the compounds are 
likely to be more reactive in corrosion processes, as they can attract electrons from the environment 
more effectively. Thus, the combination of low HOMO and high LUMO values may indicate 
particularly reactive compounds, potentially enhancing corrosion rates. 

The gap energy (ΔE) displayed substantial differences, ranging from 1.897 to 13.536, 
signifying considerable diversity in energy characteristics among the molecules. A smaller ΔE 
typically suggests increased reactivity, as less energy is required for electron transitions between 
the HOMO and LUMO. Compounds with lower ΔE values may readily participate in chemical 
reactions, including those leading to corrosion. Compounds with higher ΔE values may exhibit 
more stability and lower reactivity, potentially resulting in reduced corrosion rates. 

The dipole moment (μ) and electrophilicity, represented by the fraction of transferred 
electrons (ΔN), exhibited the most extensive variation among the analyzed parameters, with dipole 
moments ranging from 0.847 to 13.371. This suggests substantial heterogeneity in polarity among 
the studied compounds. Higher dipole moments typically correlate with stronger intermolecular 
interactions, influencing the solubility and reactivity of the compounds in corrosive environments. 
For instance, compounds with high dipole moments may interact more favourably with polar 
solvents, enhancing their corrosion susceptibility. The electrophilicity, as measured by ΔN, ranged 
from -1.212 to 16.298, further emphasizing the variability in electron transfer tendencies among the 
molecules. Compounds exhibiting higher electrophilicity values are more likely to act as 
electrophiles in corrosion reactions, thus facilitating the corrosion process. This highlights the 
importance of understanding electron transfer dynamics in assessing the corrosion behaviour of 
pyridazine compounds. 

Ionization potential (I) and electronegativity (χ) showed more moderate distributions, 
ranging from 4.477 to 7.945 and 0.429 to 5.971, respectively. Ionization potential indicates the 
energy required to remove an electron, with higher values suggesting increased stability and 
reduced reactivity. Conversely, lower ionization potential can make a compound more susceptible 
to corrosion due to its enhanced ability to lose electrons. Electronegativity reflects the ability of an 
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atom to attract electrons; thus, higher electronegativity can influence the reactivity of pyridazine 
compounds in corrosive environments. 

Global hardness (η) and global softness (σ) provided complementary insights into chemical 
reactivity, with global hardness ranging from 0.949 to 6.768 and global softness varying between 
0.148 and 1.054. High global hardness indicates that a compound is less reactive, whereas 
increased softness suggests a greater propensity for chemical interaction. These descriptors are 
crucial in understanding how pyridazine compounds behave in corrosive conditions, where softer 
compounds may more readily participate in corrosive reactions. 

The diversity in statistical values highlights the complexity of molecular interactions in the 
context of pyridazine compound corrosion. High variability in specific parameters, particularly 
electrophilicity and energy gap (ΔE), suggests that further analysis is necessary to identify critical 
factors contributing to corrosion. These findings pave the way for in-depth research on the 
relationship between molecular characteristics and corrosion tendencies, with potential applications 
in developing more accurate predictive models. By comprehensively examining these features, the 
study aims to provide valuable insights into the mechanisms underlying corrosion phenomena in 
pyridazine compounds, ultimately contributing to developing strategies to mitigate corrosion in 
practical applications. 
 
3.2.  Correlation and Significance 

Correlation measures how strong the relationship is between two variables in a statistical 
analysis. The correlation value ranges from -1 to 1, where a value close to 1 indicates a strong 
positive relationship between two variables, meaning that an increase usually follows an increase in 
one variable in the other variable, while if the correlation value is close to -1, it means that there is 
a negative relationship, where a decrease follows an increase in one variable in the other variable, 
while a value close to 0 indicates that there is no significant linear relationship between the two 
variables [32]. 

 
Figure 3. Correlation Matrix of Molecular Properties in Pyridazine Compounds 

 
Figure 3 illustrates the Correlation Matrix of Molecular Properties in Pyridazine 

Compounds, presenting several critical relationships between the chemical parameters essential for 
understanding molecular behaviour and stability. A strong positive correlation between HOMO and 
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LUMO (r = 0.96) suggests that as HOMO energy increases, LUMO energy follows, reflecting the 
overall stability of the molecules and their tendency to gain or lose electrons, a critical factor in 
chemical reactions. This is particularly relevant for pyridazine compounds, where the stability of 
the electronic structure influences their potential applications in areas such as catalysis or corrosion 
inhibition. The matrix also reveals significant positive correlations between electronegativity (χ) 
and electron affinity (A) (r = 0.95), implying that more electronegative molecules have a higher 
tendency to attract electrons, which could enhance their ability to participate in electron transfer 
reactions, a key feature for designing efficient inhibitors. Similarly, the high correlation between 
electronegativity (χ) and dipole moment (µ) (r = 0.95) indicates that electronegative molecules tend 
to exhibit more excellent dipole moments, affecting molecular interactions, solubility, and overall 
reactivity, which could impact their efficiency as corrosion inhibitors by influencing how they 
interact with metal surfaces. 

In contrast, strong negative correlations are observed between HOMO and 
electronegativity (χ) (r = -0.95) and between LUMO and electronegativity (χ) (r = -0.96), 
suggesting that molecules with higher HOMO and LUMO energy levels tend to be less 
electronegative and release electrons more easily. This is crucial for analyzing the electron-
donating properties of molecules in reactions, especially in the context of pyridazine compounds, 
where their ability to donate electrons may affect their reactivity and potential as corrosion 
inhibitors. Another significant relationship is the negative correlation between electronegativity (χ) 
and global hardness (η) (r = -0.82), suggesting that molecules with higher electronegativity are 
generally softer and more chemically reactive. This is an essential factor when considering 
pyridazine compounds' reactivity and chemical stability, as softer molecules may more readily 
participate in chemical reactions, which could enhance their performance in preventing corrosion. 

These correlations reveal the intrinsic properties of pyridazine compounds and provide 
insights into how these molecular features might influence their behaviour in practical applications, 
such as corrosion inhibition. By understanding these relationships, the study sheds light on how 
these compounds' electronic and chemical properties could be tailored for specific industrial 
purposes, thus supporting the overall findings of the research. 

The significance of a correlation refers to the extent to which the relationship between two 
variables can be considered real or to have occurred by chance. In the context of corrosion 
inhibition, the significance of the correlation between a variable and the target corrosion inhibition 
variable is determined based on the p-value. The p-value is the probability of obtaining a result 
equal to or more extreme than the observed result, assuming that the null hypothesis is true or that 
there is no relationship [33]. 

 
Table 2. Significance of Variables Based on P-Value 

Variable P-Value Significance 
HOMO 0.0464 No 
LUMO 0.0142 No 
gap energy 0.0046 Yes 
dipole moment 0.1422 No 
ionization potential 0.0503 No 
electron affinity 0.0142 No 
electronegativity 0.0602 No 
global hardness 0.0048 Yes 
global softness 0.0035 Yes 
electrophilicity 0.4188 No 
fraction of electrons transferred 0.1984 No 

 
In Table 2, a commonly used p-value of 0.05. This value indicates (α) = 5% significance 

level, meaning there is a 5% chance that the observed relationship occurred by chance. Using a 
threshold of 0.05 is a frequently chosen practice in statistical analysis because it is considered a 
reasonable compromise between the type I error rate of incorrectly rejecting the null hypothesis and 
the desire to detect real relationships. According to academic standards and established practice, 
this 0.05 threshold provides a good balance between sensitivity and specificity in hypothesis 
testing, as described by Fisher, one of the pioneers in statistics [34]. 
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a. Relationship Between IE and HOMO 
A weak positive correlation (r = 0.18) is observed between IE and HOMO, which is 

marginally insignificant at α = 0.05 (p-value = 0.0464). Although HOMO is linked to the 
molecule's ability to donate electrons, this weak association suggests that HOMO is not a primary 
determinant of the corrosion inhibition efficiency in pyridazine compounds. 
 
b. Relationship Between IE and LUMO 

There exists a weak negative correlation (r = -0.22) between IE and LUMO, which is 
insignificant (p-value = 0.0142). This implies that the electron-accepting capacity of pyridazine 
molecules plays a relatively minor role in influencing their IE. 
 
c. Relationship Between IE and gap energy 

A significant negative correlation (r = -0.26) was found between IE and gap energy (p-
value = 0.0046). This indicates that pyridazine compounds with smaller energy gaps demonstrate 
higher inhibition efficiencies, likely due to increased molecular reactivity and adsorption potential 
on metal surfaces. 
 
d. Relationship Between IE and dipole moment 

IE shows a weak positive correlation with dipole moment (r = 0.13), though the result is 
not statistically significant (p-value = 0.1422). This suggests that the polarity of pyridazine 
molecules has a minimal impact on their IE. 
 
e. Relationship Between IE and ionization potential 

A weak negative correlation (r = -0.18) between IE and ionization potential is noted, with 
results nearing but not reaching statistical significance (p-value = 0.0503). While close to the 
threshold, ionization potential does not appear to be a key factor influencing the IE of pyridazine 
compounds. 

 
f. Relationship Between IE and electron affinity 

The correlation between IE and electron affinity is weakly positive (r = 0.22) and not 
significant (p-value = 0.0142). This suggests that the electron-accepting ability of pyridazine 
molecules contributes little to their overall IE. 

 
g. Relationship Between IE and electronegativity 

A weak positive correlation (r = 0.17) between IE and electronegativity was observed, with 
the result not reaching significance (p-value = 0.0602). Therefore, electronegativity does not play a 
major role in determining the IE of these molecules. 

 
h. Relationship Between IE and global hardness 

A significant negative correlation (r = -0.26) was found between IE and global hardness (p-
value = 0.0048). This suggests that pyridazine compounds with lower hardness, or "softer" 
compounds, tend to exhibit greater IE, potentially due to enhanced adsorption and interaction with 
metal surfaces. 

 
i. Relationship Between IE and global softness 

A significant positive correlation (r = 0.26) between IE and global softness (p-value = 
0.0035) supports previous conclusions. Softer pyridazine compounds demonstrate higher IE, 
aligning with the Hard and Soft Acids and Bases (HSAB) theory principles in the context of 
corrosion inhibition. 

 
j. Relationship Between IE and electrophilicity 

A weak negative correlation (r = -0.07) between IE and electrophilicity is observed, with 
insignificant results (p-value = 0.4188). This finding indicates that the electrophilic character of 
pyridazine molecules has little to no effect on their IE. 



Int. J. Adv. Data Inf. Syst. ISSN: 2721-3056 r 
 

Ensemble Stacking of Machine Learning Approach for Predicting Corrosion ... (Noval Ariyanto) 

207 

 
k. Relationship Between IE and a fraction of electron transferred 

The correlation between IE and the fraction of electrons transferred is weak and negative (r 
= -0.12), with no statistical significance (p-value = 0.1984). This suggests that electron transfer 
fraction is not a primary driver of IE in pyridazine compounds. 
 

This analysis shows that gap energy, global hardness, and global softness significantly 
correlate with the IE of pyridazine compounds. These findings suggest that properties related to the 
chemical reactivity and electronic flexibility of the molecule play an important role in the 
effectiveness of pyridazine as a corrosion inhibitor. Other factors, although correlated, did not show 
strong statistical significance, indicating the complexity of the corrosion inhibition mechanism 
involving the interaction of various molecular parameters. 

Outlier detection is identifying data that is significantly different from most other data [35]. 
It serves several important functions, such as helping to identify data errors that may have occurred 
during collection or processing, understanding rare phenomena that may be relevant for analysis, 
and improving model quality by removing irrelevant data [36]. Outliers can harm statistical and 
machine learning models, as they tend to cause bias in the model, reduce prediction accuracy, and 
can result in overfitting, where the model focuses too much on extreme values that do not represent 
the true pattern [37]. Several methods can handle outliers, such as deleting the data if it is 
considered incorrect, transforming the data to adjust the scale, or using models more resistant to 
outliers, such as isolation forests. Thus, detecting and handling outliers is very important so that the 
model can produce accurate predictions and not be disturbed by data that does not reflect the 
general situation. 

 
Figure 4. Outlier Distribution of Key Molecular Properties Using Isolation Forest 

 
In Figure 4, outlier analysis was conducted selectively using the isolation forest method to 

identify the outlier distribution. Data visualization was implemented using the matplotlib library 
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through scatter plot functions, facilitating the identification of extreme values significantly 
deviating from most observations. 

In the HOMO visualization, outliers were detected in the range of -8 to -4.5. For LUMO, 
outliers were identified in the value spectrum of -4 to 6, with the main concentration of data around 
-1.8. The analysis of gap energy revealed outliers within the interval of 12 to 14, while most of the 
data were distributed between 2 and 6. 

The evaluation of the dipole moment showed a broad data distribution, with outliers 
detected below the value of 6, while most observations were concentrated between 2 and 7. In the 
case of ionization potential, outliers were identified at both extremes of the distribution, although 
most data were concentrated between 5 and 7.5. The analysis of electron affinity revealed 
significant negative outliers around the value of -6, with the main concentration of data between 2 
and 4. 

The distribution of electronegativity exhibited a similar outlier pattern to electron affinity, 
with most data residing within the interval of 3 to 5. In global hardness, outliers were detected at 
high values between 5 and 7, while the main data concentration was 1 and 3. The analysis of global 
softness identified outliers at both extremes, particularly values below 0.2 and above 0.8, with most 
observations falling between 0.4 and 0.7. 

The evaluation of electrophilicity showed an extensive outlier distribution, ranging from 
negative values to above 15, with the main data concentration between -1.5 and 7.5. Similarly, the 
fraction of electron transferred analysis revealed an outlier pattern akin to electrophilicity, spread 
across both distribution extremes, with most data between 0.1 and 0.8. 

Identifying these outliers highlights the presence of extreme values that may impact the 
validity of the analysis results. In this context, handling outliers is crucial to ensure the accuracy 
and reliability of the developed statistical models. A comprehensive approach to data verification, 
the implementation of robust methods, and consideration of data transformation can contribute to 
mitigating the negative effects of outliers on the integrity of data analysis. 
 
3.3.  Model Development 

This study developed a predictive model for corrosion analysis of pyridazine compounds 
using stacking. Random Forest was chosen as the meta-model and integrated with boosting-based 
algorithms, namely LGBM, XGB, and CatBoost, as the base model. The hyperparameter 
optimization process used Optuna with 100 iterations for each algorithm to identify the optimal 
parameter configuration based on RMSE performance. The two best models from each algorithm 
were selected for further analysis. The implementation of LOO cross-validation allowed a 
comprehensive evaluation of the stability and generalizability of the selected models. 

Furthermore, the selected models were integrated through a stacking technique with 
Random Forest as the meta-model to optimize predictive capabilities. This approach is expected to 
improve the accuracy and robustness of predictions by utilizing complex patterns that individual 
models may miss. Through this systematic methodology, the research aims to produce an accurate 
and generalizable predictive model, allowing the exploration of complex interactions between 
predictor variables in the context of corrosion analysis of pyridazine compounds. 
 
3.3.1.  Light Gradient Boosting Machine 

To improve prediction performance, a hyperparameter tuning process, as shown in Table 3, 
was performed using five main parameters, namely lambda_l1, lambda_l2, min_child_weight, 
min_data_in_leaf, and max_depth. These hyperparameters are essential in controlling the model’s 
regularization, complexity, and generalization ability. lambda_l1 and lambda_l2 apply penalties to 
the model’s weights to prevent overfitting by controlling how much the model depends on 
individual features. min_child_weight ensures that leaf nodes are created only when sufficient data 
points are present, reducing the risk of overfitting. min_data_in_leaf specifies the minimum 
number of data points in a leaf, preventing the creation of overly specific splits. Finally, max_depth 
limits how deep the trees can grow, balancing the model's ability to capture patterns while avoiding 
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overfitting. The tuning process was conducted across multiple iterations to achieve the best 
combination of parameters, leading to more accurate predictions. 

 
Table 3. Optimized Parameters and RMSE Comparison for LGBM Models 

 
 
 

LGBM 1 
 

 

Parameter RMSE 
A 0.555  

 
0.0578 

 
 

B 0.001 
C 3.021 
D 20 
E 10 

 
 
 

LGBM 2 
 

 

Parameter RMSE 
A 0.519  

 
0.0576 

 
 

B 0.000 
C 4.311 
D 20 
E 10 

note*: A = lamda_l1; B = lamda_l2; C = min_child_weight; D = min_data_in_leaf; E = max_depth; 
 

The two LGBM models show a minimal difference in RMSE values, with LGBM 1 having 
an RMSE of 0.0578 and LGBM 2 having an RMSE of 0.0576, primarily due to regularisation 
parameter variations. The improvement in LGBM 2 is primarily driven by changes in A 
(lambda_l1) and C (min_child_weight). A lower lambda_l1 (from 0.555 to 0.519) in LGBM 2 
applies less L1 regularization, making the model slightly less restrictive, which may allow it to 
capture more complex relationships in the data. Additionally, an increase in min_child_weight 
(from 3.021 to 4.311) makes LGBM 2 more conservative, requiring more significant sums of 
instance weights for leaf creation, which reduces overfitting and ensures that only more significant 
patterns are captured by the model. 

The other parameters, lambda_l2 (B), min_data_in_leaf (D), and max_depth (E), remain 
constant between the two models, indicating that the slight difference in RMSE is primarily 
attributed to the regularization adjustments. The zero value for lambda_l2 (B) in both models 
suggests that no L2 regularization was applied, leaving L1 regularization as the primary driver of 
regularization effects. 

 
3.3.2.  Extreme Gradient Boosting 

In the process of optimizing model performance, hyperparameter tuning for the XGB 
algorithm, as outlined in Table 4, focused on eleven key parameters: grow_policy, learning_rate, 
gamma, subsample, colsample_bytree, max_depth, min_child_weight, lambda, alpha, booster, and 
tree_method. These parameters are essential in fine-tuning the model’s complexity and 
generalization ability to unseen data. The grow_policy parameter controls how the tree structure 
develops, either by death or loss reduction, while learning_rate dictates how quickly the model 
learns from the training data. Gamma is critical in determining the model’s sensitivity to node 
splits, helping manage overfitting. 

Subsample and colsample_bytree decide how much dataset and features are used to build 
each tree, balancing the trade-off between bias and variance. Max_depth and min_child_weight 
limit how deep trees can grow and ensure that each node contains a minimum amount of data, 
which helps prevent the model from becoming too complex. Lastly, lambda (L2 regularization) and 
alpha (L1 regularization) penalise overly complex models, reducing overfitting. The booster and 
tree_method parameters specify the boosting method and the algorithm used for tree construction, 
respectively. The model was optimized to deliver the best possible prediction performance by 
iteratively tuning these parameters. 

 
Table 4. Optimized Parameters and RMSE Comparison for XGB Models 

 
 
 
 
 

XGB 1 
 

Parameter RMSE 
A depthwise  

 
 
 
0.059 

 

B 0.047 
C 0.087 
D 0.378 
E 0.512 
F 4 
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G 7 
H 0.002 
I 0.045 

 J gbtree  
 K hist  
 
 
 
 
 

XGB 2 

Parameter RMSE 
A lossguide  

 
 
 
0.060 

 

B 0.046 
C 0.035 
D 0.530 
E 0.724 
F 10 
G 2 
H 1.040 
I 0.340 
J gbtree 
K hist 

note*: A = grow_policy; B = learning_rate; C = gamma; D = subsample; E = colsample_bytree; F = max_depth; G = min_child_weight; 
H = lambda; I = alpha; J = booster; K = tree_method; 

 
Both XGB models show similar performance in terms of RMSE values, with the first XGB 

model having 0.059 and the second XGB model at 0.060, despite significant differences in their 
parameter configurations. The first XGB model uses a grow_policy of loss guide, which allows for 
more profound tree formation with a max_depth of 10, enabling it to capture more intricate details 
and complex patterns in the data. Additionally, the more considerable colsample_bytree value of 
0.724 enriches the model by using more features at each iteration, which improves its ability to 
identify relationships between variables. However, this model may tend to be more complex and is 
at a higher risk of overfitting, even though a lower min_child_weight of 2 helps control this by 
allowing for more frequent node splitting. 

In contrast, the second XGB model uses a depthwise grow_policy with a smaller 
max_depth of 4, resulting in a simpler model that is more efficient in execution time but with more 
limited pattern-capturing capabilities. The higher gamma value of 0.087 in the second XGB model 
makes it more selective in pruning, adding new branches only if they significantly improve. 
Although the learning_rate in the second model is slightly higher (0.047) than in the first (0.046), 
this difference allows for a slightly faster learning speed without sacrificing stability. The higher 
min_child_weight of 7 in the second XGB model reduces the risk of overfitting by requiring more 
samples before forming a new node. 

While both models exhibit similar RMSE performance, the first XGB model is more 
suitable for complex data due to its ability to capture finer details. In contrast, the second XGB 
model is more efficient and better suited for situations where generalization and faster execution 
are preferred. 

 
3.3.3.  Category Boosting 

The CatBoost algorithm performs hyperparameter tuning in Table 5 using three primary 
parameters: l2_leaf_reg, depth, and random_strength. l2_leaf_reg is a regularization parameter that 
controls the amount of L2 regularization applied to leaf values, helping the model avoid overfitting 
by penalizing overly large weight values, with higher values making the model more conservative 
and reducing its sensitivity to noise. Depth regulates the maximum depth of the decision trees, 
where deeper trees can capture more complex feature interactions but also increase the risk of 
overfitting, making it essential to balance model complexity and generalization. Random_strength 
introduces noise into the selection of splits during tree construction, which helps improve 
generalization by preventing the model from memorizing specific patterns or noise in the training 
data. Tuning these parameters iteratively allows the model to find the optimal balance between bias 
and variance, ultimately improving prediction performance, especially when dealing with complex 
categorical data, where CatBoost is particularly effective. 
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Table 5. Optimized Parameters and RMSE Comparison for CatBoost Models 
 
 
CatBoost 1 
 

Parameter RMSE 
A 19.393  

0.060 B 6 
C 8.566 

 
 
CatBoost 2 
 

Parameter RMSE 
A 19.561  

0.060 
 

B 5 
C 7.980 

note*: A = l2_leaf_reg; B = depth; C = random_strength; 
 
Despite differences in parameter settings, both CatBoost models show identical 

performance, with an RMSE of 0.060 for each model. The first CatBoost model uses an l2_leaf_reg 
of 19.393, while the second model has a slightly higher value of 19.561. This higher regularization 
in the second model helps reduce the risk of overfitting, but both values are very close in effect. 
The depth parameter is set to 6 in the first and 5 in the second models. The deeper tree in the first 
model allows it to capture more complex patterns, while the second model with a depth of 5 might 
generalize better. The random strength is 8.566 in the first model and 7.980 in the second, meaning 
the first model introduces more randomness in tree splits, which can help prevent overfitting. While 
both models perform similarly, the first model may capture more detailed patterns, whereas the 
second offers slightly better generalization due to its higher regularization and lower depth. 
 
3.3.4.  Stacking 

The stacking method works by training a meta-model based on the predictive output 
produced by the base models. This approach aims to utilize the strengths of each base model so that 
the meta-model can correct the weaknesses and provide more accurate predictions. 

 
Table 6. Stacking Development 

Model RMSE 
Stacking Meta Random 

Forest 
0.055 

 
This study performs the stacking process using several base models, including LGBM, 

XGB, and CatBoost. When used individually, these models have varying performance, with the 
best result coming from the LGBM model, which produces an RMSE of 0.057. However, better 
results were obtained by combining the predictions from these base models and training a meta-
model using a random forest, with a validation RMSE of 0.055. This reduction in RMSE indicates 
that the meta-model successfully addresses the weaknesses of the base models and provides more 
accurate predictions overall, as shown in Table 7. The stacking approach is practical because it 
leverages the strengths of each model: LGBM, XGB, and CatBoost excel at capturing complex data 
patterns, while random forest provides robust overfitting control. As a result, the combination of 
these models produces a more reliable and accurate predictive model. 
 
3.3.5.  Model Evaluation 

This research used the LOO cross-validation technique to evaluate the performance of 
three different machine-learning algorithms. In this study, LOO was applied, where the dataset, 
consisting of 120 rows, was split so that each data point was used as test data once, while the 
remaining 119 rows were used as training data. This process was repeated for each row in the 
dataset, ensuring that each data point was used as test data exactly once. The model performance 
was then assessed based on the average of all iterations, providing a robust evaluation for the small 
dataset. 

 
Table 7. Comparasion Model Based RMSE 

Model Average Training RMSE Average Validation RMSE 
LGBM1 0.070 0.057 
LGBM2 0.069 0.057 
XGB1 0.077 0.059 
XGB2 0.076 0.060 
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CATBOOST1 0.036* 0.060 
CATBOOST2 0.040 0.060 
Stacking Model 0.089 0.055* 

note*: Best RMSE 
 

Based on the RMSE results in Table 7, the LGBM1 and LGBM2 models emerge as the top 
performers with an identical validation RMSE of 0.057, highlighting their excellent predictive 
capabilities across the dataset. These results suggest that LGBM1 and LGBM2 are particularly 
well-suited to this problem, achieving the lowest validation errors among the individual models 
tested. Their consistent performance demonstrates that they can effectively handle the dataset’s 
underlying complexity while maintaining strong generalization ability. 

In contrast, CatBoost1 achieves the lowest training RMSE at 0.036, but its validation 
RMSE of 0.060 indicates that some overfitting might be present. The low training error shows that 
the model fits the training data almost perfectly, but the slight increase in validation RMSE 
suggests that the model struggles to generalize as well to unseen data. This kind of minor 
overfitting, where the gap between training and validation RMSE is around 5%, is still within 
acceptable bounds in many scenarios, as minor discrepancies are often inevitable, especially in 
complex datasets [38]. In this case, the model's performance on unseen data remains reasonable and 
does not deviate significantly from other models. 

Similarly, CatBoost2 exhibits a similar trend, with a slightly higher training RMSE of 
0.040 and an identical validation RMSE of 0.060. This performance shows that while the CatBoost 
models can fit the training data efficiently, they may face minor generalization challenges. 
However, the gap between training and validation RMSE must be more significant to significantly 
degrade performance, remaining within the expected range for such models. 

The XGB1 model, with a validation RMSE of 0.059, positions itself as another strong 
contender, though slightly behind the LGBM models in terms of overall performance. XGB1 
demonstrates a good balance between training and validation performance, with its training RMSE 
at 0.077, slightly higher than the CatBoost and LGBM models. Despite this, XGB1 maintains a 
competitive validation RMSE, suggesting it fits less than CatBoost1 or CatBoost2. 

XGB2, with a validation RMSE of 0.060, mirrors the performance of the CatBoost models, 
further demonstrating that both XGB and CatBoost algorithms can achieve solid generalization 
with careful tuning. However, these models still trail slightly behind the LGBM models in terms of 
minimizing prediction errors on unseen data. 

While individual models like LGBM1 and LGBM2 deliver excellent results, the stacking 
method, which combines the outputs of several base models, achieves even better results. The 
stacking model, which integrates predictions from LGBM1, LGBM2, XGB1, XGB2, CatBoost1, 
and CatBoost2, yields a validation RMSE of 0.055, the lowest across all models tested. This 
highlights the effectiveness of stacking in leveraging the complementary strengths of different 
models. By combining the best features of each algorithm, the stacking method enhances the 
overall predictive power, capturing subtle patterns that individual models may miss. 

The stacking approach works well because it combines predictions from multiple 
algorithms, each excelling in different aspects of the data. For instance, while LGBM may perform 
well in some regions of the dataset, CatBoost or XGB might excel in others. By averaging or 
combining the predictions through a meta-model, in this case, a Random Forest, the stacking model 
can deliver a more robust prediction by mitigating the individual weaknesses of each base model. 
The meta-model effectively learns from the errors made by the base models and corrects them, 
leading to improved generalization across the dataset. 

The performance of the stacking model reaffirms the power of ensemble learning, which is 
built on the idea that combining the outputs of several models will often lead to better performance 
than using any one model in isolation. In this study, the stacking model significantly outperforms 
even the best individual models, with its validation RMSE of 0.055 underscoring its ability to 
generalize better than any single model could. By taking advantage of the complementary strengths 
of models like LGBM, XGB, and CatBoost, the stacking method ensures that the final model is 
accurate and reliable across various test cases. 
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Moreover, the stacking approach is beneficial when overfitting is a concern. Models like 
CatBoost1 and CatBoost2, which show signs of overfitting with their low training RMSE and 
slightly higher validation RMSE, can mitigate their weaknesses through stacking. Combining these 
models with others, such as LGBM1 or XGB1, which do not exhibit as much overfitting, helps the 
stacking model balance bias and variance more effectively, leading to better overall performance. 

The stacking approach, therefore, proves to be the most effective technique in this study, 
outperforming individual models by a notable margin. It not only leverages the strengths of each 
model but also compensates for its weaknesses, providing a well-rounded and highly accurate 
predictive model. Using a meta-model, such as a Random Forest, adds an extra layer of flexibility 
and refinement, allowing the model to adapt to the specific patterns in the data. This makes 
stacking a powerful tool in developing robust predictive models, especially in complex data science 
applications where accuracy and generalization are critical. 
 
4. CONCLUSION 

This study demonstrates that a machine learning approach using stacking techniques on 
ensemble models is highly effective in predicting the corrosion IE of pyridazine-derived 
compounds. Combining the strengths of multiple base models—LGBM, XGBoost, and CatBoost—
with Random Forest as a meta-model, the stacking model outperforms individual models, 
achieving the lowest RMSE value of 0.055. This improvement highlights the power of stacking in 
enhancing predictive performance, as it allows the model to leverage the unique advantages of each 
algorithm, providing more robust and accurate predictions compared to single models. Stacking 
integrates different learning approaches, which enables better handling of complex patterns in the 
dataset, minimizing individual weaknesses and reducing overfitting. 

In practical applications, the stacking approach presented in this study can be precious in 
industrial settings, particularly for predicting corrosion resistance in various materials. The ability 
to predict corrosion inhibition efficiently using machine learning models offers industries a faster, 
more cost-effective alternative to traditional experimental methods, which are often time-
consuming and expensive. Beyond corrosion inhibition, this approach can be adapted to predict 
other chemical or material properties, such as catalyst efficiency, biological activity, or other 
properties of compounds with different chemical structures. 

However, this study also has some limitations. One fundamental limitation is the relatively 
small dataset used, which may affect the model’s generalization ability to more extensive or 
diverse datasets. While the stacking model shows excellent performance in the dataset provided, 
further testing on a broader range of compounds with different chemical structures is necessary to 
assess its reliability and generalizability fully. Additionally, while the stacking approach improves 
predictive accuracy, it may come with increased computational complexity and time to train the 
model due to the combination of multiple algorithms. 

For future research, exploring other ensemble techniques, such as bagging or blending, is 
recommended to assess whether these approaches could yield even better performance. Techniques 
like Random Forest and Bagged Decision Trees could be explored for bagging, while neural 
network-based voting or stacked generalization methods may also provide further improvements. 
Additionally, applying these machine learning approaches to larger, more diverse datasets would 
help evaluate the scalability of the models and expand their applicability to various chemical and 
industrial use cases, contributing to broader advancements in material science and prediction 
technologies. 
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