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 This study investigates the effectiveness of machine learning techniques, 
specifically penalized regression models Ridge Regression, Lasso Regression, 
and Elastic Net Regression in predicting methanol space-time yield (STY) 
from CO₂ hydrogenation data. Using a dataset derived from Cu-based catalyst 
research, the study implemented a comprehensive preprocessing approach, 
including data cleaning, imputation, outlier removal, and normalization. The 
models were rigorously evaluated through 10-fold cross-validation and tested 
on unseen data. Ridge Regression outperformed the other models, achieving 
the lowest Root Mean Squared Error (RMSE) of 0.7706, Mean Absolute Error 
(MAE) of 0.5627, and Mean Squared Error (MSE) of 0.5938. In comparison, 
Lasso and Elastic Net Regression models exhibited higher error metrics. 
Feature importance analysis revealed that Gas Hourly Space Velocity (GHSV) 
and Molar Masses of Support significantly influence catalytic activity. These 
findings suggest that Ridge Regression is a promising tool for accurately 
predicting methanol production, providing valuable insights for optimizing 
catalytic processes and advancing sustainable practices in chemical 
engineering. 
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1. INTRODUCTION 

The industrial production of carbon dioxide (CO₂) as a feedstock to manufacture value-added 
chemicals like methanol has gained interest in recent years due to its potential to ameliorate climate 
change and reduce dependency on fossil fuels [1]. CO₂, a major greenhouse gas, contributes heavily 
to global warming [2], and its conversion into useful chemicals, such as methanol[3], offers a 
sustainable approach to reducing its impact on the environment [4]. Methanol itself has a broad range 
of applications, including its use in the production of polymers [5], fuels, and various organic 
compounds, making it an essential component of modern industrial processes [6], [7]. As the global 
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demand for cleaner energy solutions grows, the need for efficient and sustainable methods of 
methanol production becomes even more critical [8]. 

Despite the potential benefits, the CO₂ hydrogenation process to methanol presents 
significant challenges [9]. The reaction involves a complex interplay of factors, such as catalyst type, 
temperature, pressure, and reactant ratios, all of which must be optimized to achieve efficient 
conversion. Copper (Cu)-based catalysts, known for their high activity and selectivity in producing 
methanol, are widely used for this purpose. However, achieving optimal conditions for maximum 
methanol yield is complicated due to the nonlinear nature of these interactions [10], [11]. Existing 
studies often rely on traditional optimization techniques, which fail to fully account for the 
complexities of these processes, leading to suboptimal performance and inefficiencies [12]. 

Recent advances in machine learning (ML) have opened new opportunities for improving 
complex chemical processes such as CO₂ hydrogenation [13]. Machine learning algorithms can 
model intricate relationships between multiple parameters and identify patterns that may be difficult 
to detect using conventional methods[14], [15]. In particular, penalized regression techniques, 
including Ridge Regression, Lasso Regression, and Elastic Net Regression, have proven effective in 
handling multicollinearity and preventing overfitting[16], [17], which are common issues in 
predictive modeling [17]. These algorithms introduce penalties to the regression model, encouraging 
simplicity and improving generalization by selecting the most relevant variables [18], [19]. Ridge 
Regression minimizes the size of the coefficients[20], while Lasso Regression automatically selects 
important features by shrinking the less important ones to zero[21]. Elastic Net Regression combines 
the strengths of both methods to offer a flexible and robust modeling approach [22]. 

This study addresses the gap in the existing literature by employing advanced machine 
learning techniques, specifically penalized regression models ridge regression, lasso regression, and 
elastic net regression to optimize methanol yield from CO₂ hydrogenation using Cu-based catalysts. 
Current models are often limited by their inability to fully account for the nonlinearities and 
interactions between process variables, which limits their applicability in real-world scenarios. This 
study proposes the use of machine learning algorithms, specifically penalized regression models, to 
improve the predictive accuracy and robustness of methanol yield predictions from CO₂ 
hydrogenation. By comparing the performance of Ridge, Lasso, and Elastic Net regression models, 
this research aims to identify the most effective approach for optimizing the CO₂ hydrogenation 
process. 

The objectives of this study are to compare the performance of different penalized regression 
models and identify the most effective approach for maximizing methanol yield. The innovation of 
this study lies in its application of advanced machine learning techniques to address the complexities 
of CO₂ hydrogenation. While previous studies have focused on catalyst development and process 
optimization through experimental approaches, this research leverages data-driven methods to model 
and predict the behavior of the process more accurately. By utilizing data-driven techniques, this 
study not only improves methanol production efficiency but also contributes to the broader goal of 
developing sustainable energy solutions. The integration of penalized regression techniques offers a 
new perspective on process optimization that can lead to more informed decisions and better 
performance in industrial applications. 

 
2. MATERIALS AND METHODS 

This study follows a structured approach consisting of four stages: data collection and 
splitting, preprocessing, modeling, and evaluation. The overall methodology is depicted in Figure 1. 
These stages are designed to ensure a comprehensive analysis of the dataset and an effective 
application of machine learning models for predicting methanol space-time yield. 
2.1.  Data Collection 

The dataset used in this study is derived from research by Suvarna, Araujo, and Pérez-
Ramírez (2022) on CO₂ to methanol hydrogenation, covering the period from 1996 to 2021 [23]. The 
data, sourced from Web of Science and Scopus, focuses primarily on Cu-based catalysts, accounting 
for 55% of the dataset. Key variables include Metal Loading [wt.%], Molar Masses of Support 1 and 
2 [g mol⁻¹], Total Molar Mass of Support [g mol⁻¹], Promoter 1 Loading [wt.%], Calcination 
Temperature [K], Calcination Duration [h], SBET [m² g⁻¹] (specific surface area), GHSV [cm³ h⁻¹ 
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g_cat⁻¹] (gas hourly space velocity), Catalyst Amount [g], Pressure [MPa], and Temperature [K]. 
The target variable is Methanol Space-Time Yield [gMeOH h⁻¹ g_cat⁻¹], which quantifies methanol 
production per unit of catalyst per hour and serves as the key performance metric for catalyst 
efficiency. The dataset, consisting of 707 entries, was split into training and testing subsets using an 
80:20 ratio [24]. This split allocated 80% of the data for training the models and 20% for testing, 
allowing for an unbiased evaluation of the model's performance on unseen data [25]. 

 

 
 

Figure 1. Research Framework for Predicting Methanol Space-Time Yield Using Machine Learning 
Techniques 

2.2.  Preprocessing Stage 
In the preprocessing stage, the dataset was prepared for modeling through several critical 

steps [26]. First, data cleaning was performed to identify and resolve any missing values and 
inconsistencies [27]. Next, imputation techniques were applied to address any remaining missing 
data, ensuring the completeness of the dataset. Outlier removal was then conducted to eliminate data 
points that could adversely affect model performance[28], [29]. Finally, normalization and 
standardization were applied to the data to ensure consistency across all variables [30]. Additionally, 
Exploratory Data Analysis (EDA) was carried out to assess variable distributions and relationships, 
which informed the selection of relevant features for modeling [31]. These preprocessing steps 
collectively enhanced data quality, leading to improved model accuracy and reliability. 
2.3.  Model Development 

In this study, three advanced penalized regression techniques Ridge Regression, Lasso 
Regression, and Elastic Net Regression were utilized to model methanol space-time yield in the CO₂ 
hydrogenation process. Each technique was selected for its ability to improve prediction accuracy 
while managing issues related to overfitting and multicollinearity. Ridge Regression, the first 
approach, incorporates an L2 regularization term, which applies a penalty to large regression 
coefficients [20], thereby reducing the risk of overfitting and addressing multicollinearity among 
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predictors. This regularization technique minimizes the influence of less significant features while 
preserving all variables in the model. 

The second model, Lasso Regression, introduces an L1 regularization term, which not only 
reduces overfitting but also performs automatic feature selection by shrinking less important 
coefficients to exactly zero [32]. This makes Lasso particularly useful when dealing with high-
dimensional data, where some predictors may be irrelevant or redundant. Lastly, Elastic Net 
Regression, a hybrid model that combines both L1 (Lasso) and L2 (Ridge) penalties, was employed 
to provide a balance between feature selection and regularization [33], [34]. By blending the strengths 
of both Ridge and Lasso, Elastic Net handles datasets with highly correlated predictors more 
effectively than either method alone. 

All three models were trained using 10-fold cross-validation (CV) to ensure a robust 
evaluation [35]. This approach involved splitting the dataset into 10 subsets, training the model on 
nine subsets while testing it on the remaining one, and repeating this process iteratively[36]. Cross-
validation helps minimize overfitting by ensuring that each data point is used for both training and 
validation, resulting in a more reliable assessment of model performance across different subsets of 
the data. 
 
2.4.  Model Evaluation 

To assess the effectiveness of the penalized regression models developed in this study, a 
comprehensive evaluation framework was implemented. This evaluation aimed to quantify the 
accuracy of the models in predicting methanol space-time yield from the CO₂ hydrogenation process, 
ensuring that the models not only performed well on training data but also generalized effectively to 
unseen data. By using various error metrics, the evaluation provided insight into the models' ability 
to minimize prediction errors and capture the underlying relationships between the input features and 
the target variable. To assess the performance of the penalized regression models, a comprehensive 
evaluation was conducted using three key error metrics: Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and Mean Squared Error (MSE). These metrics provide different 
perspectives on the models' accuracy and help in understanding their predictive capabilities. Each 
metric was calculated as follows: 
1. Root Mean Squared Error  

RMSE measures the average magnitude of the prediction errors. It is computed by taking the 
square root of the mean of the squared differences between actual and predicted values [37]. This 
metric is sensitive to large errors, making it useful for identifying models that may have significant 
deviations. The formula for RMSE is: 

𝑅𝑀𝑆𝐸 = &∑ (𝑦! − 𝑦+)"#
!$%

𝑛  (1) 

where 𝑦! represents the actual values, 𝑦! denotes the predicted values, and 𝑛 is the number of 
observations. A lower RMSE indicates better model performance, with fewer errors. 
2. Mean Absolute Error  

MAE measures the average magnitude of the absolute differences between actual and predicted 
values [37]. Unlike RMSE, MAE does not square the errors, which makes it less sensitive to outliers. 
The formula for MAE is: 

𝑀𝐴𝐸 =
∑ |𝑦! − 𝑦+|#
!$%

𝑛  (2) 
 

where |𝑦! − 𝑦+| represents the absolute error for each observation. A lower MAE indicates 
that the model's predictions are closer to the actual values, providing a straightforward measure of 
prediction accuracy. 
3. Mean Squared Error 

MSE calculates the average of the squared differences between actual and predicted values. It 
provides a measure of the variance of the errors and is particularly useful for identifying models that 
may have high variance[37]. The formula for MSE is: 
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𝑀𝑆𝐸 =
1
𝑛1

(𝑦! − 𝑦+)"
#

!$%

 (3) 

where (𝑦! − 𝑦+)" represents the squared error for each observation. Like RMSE, a lower MSE 
indicates better model performance, with fewer large errors. By employing these metrics, the study 
ensured a thorough evaluation of the penalized regression models' predictive accuracy, allowing for 
a well-rounded assessment of their performance in predicting methanol space-time yield in the CO₂ 
to methanol conversion process. 
3. RESULTS AND DISCUSSION 

This section outlines the research findings and discusses their implications. It includes an 
analysis of model performance, highlighting the accuracy and effectiveness of the employed 
regression techniques. The discussion also delves into the significance of key factors influencing 
methanol space-time yield. 
3.1.  Exploratory Data Analysis Results 

The EDA provides an overview of the dataset, helping to identify key patterns and potential 
anomalies that may affect methanol space-time yield in CO₂ hydrogenation using Cu-based catalysts. 
Figure 2 presents violin plots illustrating the distribution of important variables, such as Metal 
Loading, Support Molar Weights, Promoter Loading, and Reaction Conditions. This analysis 
highlights data skewness and variability, offering insights into the factors that may influence 
methanol production and guiding the development of penalized regression models. 
 

 
 

Figure 2. Violin Plots of Key Variables in CO₂ Hydrogenation to Methanol Using Cu-Based Catalysts 
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The violin plots in Figure 1 provide insights into the distribution of key variables relevant to 
CO₂ hydrogenation to methanol using Cu-based catalysts. Methanol Space-Time Yield shows a right-
skewed distribution, indicating that while most experiments had lower yields, a few had significantly 
higher yields, potentially revealing optimal conditions or superior catalyst formulations. The 
skewness in Metal Loading and the molar weights of Support 1 and Support 2 suggests that most 
experiments used lower values, with higher values possibly linked to better catalytic performance. 
Promoter 1 Loading is notably skewed, with most data points at low levels and a few at higher levels, 
suggesting that higher promoter loadings may be crucial for optimizing catalyst performance. The 
moderate positive skewness in Calcination Temperature and SBET points to standard conditions 
being common, with some instances of higher values potentially enhancing catalytic properties. 
Variables like Gas Hourly Space Velocity show right skewness, reflecting typical gas flow conditions 
with a few high values possibly improving mass transfer rates. In contrast, Calcination Duration and 
Temperature exhibit mild negative skewness, indicating that longer durations and higher 
temperatures are more commonly applied, likely for better catalyst stability and reaction rates. 
Understanding these distribution patterns helps in developing accurate predictive models, where 
penalized regression techniques like Ridge, Lasso, and Elastic Net address non-normal distributions, 
minimize overfitting, and enhance model robustness. 

 

 
Figure 3. Heatmap of Correlation Coefficients Between Methanol Space-Time Yield and Experimental 

Variables 
 

Following the exploratory data analysis, which provided insights into the distribution and 
characteristics of the dataset, a correlation analysis was conducted to further understand the 
relationships between Methanol Space-Time Yield [mgMeOH h⁻¹ g_cat⁻¹] and various experimental 
variables. This analysis aimed to quantify how each variable influences methanol yield, providing a 
deeper understanding of the factors that impact the efficiency of CO₂ hydrogenation processes. 
Figure 3 displays the heatmap of these correlation coefficients, illustrating both the strength and 
direction of the relationships between STY and other variables. The analysis reveals that Metal 
Loading [wt.%] has a moderate positive correlation of 0.329 with STY, suggesting that higher metal 
loading is associated with increased methanol yields, which implies that optimizing metal content 
could enhance catalyst performance.Conversely, variables such as Molar Weight of Support 1 [g 
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mol⁻¹] and Total Molar Weight of Support [g mol⁻¹] exhibit negligible effects on methanol yield, 
with correlations of -0.011 and 0.053, respectively. This indicates that changes in these variables do 
not significantly impact STY. Molar Weight of Support 2 [g mol⁻¹] and Promoter 1 Loading [wt.%] 
show weak positive correlations of 0.199 and 0.039, respectively, suggesting minimal influence on 
methanol yield. 

Calcination Temperature [K] and Calcination Duration [h] have very weak correlations 
(0.018 and -0.034, respectively), indicating their minimal impact on methanol production. The 
Specific Surface Area (SBET) [m² g⁻¹] also shows a minimal negative correlation of -0.007, 
reflecting that changes in surface area have little effect on methanol yield. Gas Hourly Space Velocity 
[cm³ h⁻¹ g_cat⁻¹] demonstrates a strong positive correlation of 0.506, highlighting its significant 
influence on methanol production efficiency. Catalyst Amount [g], Pressure [MPa], and Temperature 
[K] show very weak positive correlations (0.012, 0.145, and 0.135, respectively), indicating a modest 
influence on methanol yield. 

 
3.2.  Model Development Phase 

 In the model development phase, penalized regression techniques—Ridge Regression, 
Lasso Regression, and Elastic Net Regression—were employed to predict STY from CO₂ 
hydrogenation data. Each model underwent a rigorous evaluation using 10-fold cross-validation to 
ensure robustness and generalizability. The results of the cross-validation are summarized in Table 
1.  

Table 1. Performance Metrics of Penalized Regression Models 
Variable Statistics RMSE MAE MSE 

Ridge Regression Mean 0.7339 0.5538 0.5459 
Stdev 0.0849 0.0661 0.1295 

Lasso Regression Mean 0.7841 0.6034 0.6190 
Stdev 0.0641 0.0461 0.1029 

Elastic Net Regression Mean 0.9867 0.7897 0.9792 
Stdev 0.0757 0.0557 0.1463 

 
Ridge Regression emerged as the most effective model, achieving a RMSE of 0.7339, a 

MAE of 0.5538, and a MSE of 0.5459. These metrics indicate that Ridge Regression provided a 
balanced approach to model complexity and accuracy, yielding reliable predictions for methanol 
production. Lasso Regression showed slightly less accuracy with a mean RMSE of 0.7841, mean 
MAE of 0.6034, and mean MSE of 0.6190. Although Lasso Regression is known for its feature 
selection capabilities, its more aggressive regularization resulted in marginally higher error metrics 
compared to Ridge Regression. Elastic Net Regression had the highest error metrics, with a mean 
RMSE of 0.9867, mean MAE of 0.7897, and mean MSE of 0.9792. Despite combining elements of 
both Ridge and Lasso, its complex regularization framework did not perform as well in this context. 
 

 
(a) (b) (c) 

Figure 4. Performance Metrics of Penalized Regression Models Across 10-Fold Cross-Validation: (a) RMSE, 
(b) MAE, (c) MSE 
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Figure 4 presents these results, displaying the performance metrics across each fold of the 
cross-validation process. Fold 8 emerged as the most consistently effective across all models. 
Consequently, the Ridge Regression model trained with data from Fold 8 was selected for predicting 
methanol yield on the testing data. This choice ensures the most reliable and accurate predictions, 
contributing to the optimization of methanol production processes from CO₂ hydrogenation and 
supporting advancements in sustainable chemical manufacturing. 

 
3.3.  Model Evaluation 

Based on the model development phase, the performance of the penalized regression 
models—Ridge Regression, Lasso Regression, and Elastic Net Regression—was further assessed on 
the test set, using the best-performing fold from the cross-validation. The evaluation results are 
summarized in Table 2. Ridge Regression, with an RMSE of 0.7706, MAE of 0.5627, and MSE of 
0.5938, emerged as the most reliable model for predicting Methanol STY. This performance 
indicates that Ridge Regression provides a robust and consistent prediction of methanol production 
efficiency. Its lower error metrics suggest that it effectively balances the complexity of the model 
with predictive accuracy, making it well-suited for practical applications in optimizing catalyst 
performance for CO₂ hydrogenation. 

 
Table 2. Evaluation Results on the Test Set 

Model RMSE MAE MSE 
Ridge Regression 0.7706 0.5627 0.5938 
Lasso Regression 0.8419 0.6416 0.7087 

Elastic Net Regression 1.0107 0.7907 1.0214 
 

In contrast, Lasso Regression showed an RMSE of 0.8419, MAE of 0.6416, and MSE of 
0.7087. Although Lasso Regression excels in feature selection by shrinking less relevant coefficients 
to zero, its performance on the test set was slightly less accurate than Ridge Regression. This outcome 
suggests that while Lasso’s feature selection is valuable, its more aggressive regularization resulted 
in higher prediction errors. This could imply that in this context, reducing model complexity did not 
translate into improved performance. Elastic Net Regression, which combines elements of both 
Ridge and Lasso regularization, had the highest error metrics, with an RMSE of 1.0107, MAE of 
0.7907, and MSE of 1.0214. Despite its ability to address multicollinearity and perform feature 
selection, the complex regularization framework of Elastic Net did not perform as effectively as 
Ridge Regression. This suggests that the model’s added complexity may not have been beneficial 
for this particular dataset and prediction task. Ridge Regression proved to be the most effective model 
for predicting methanol space-time yield from CO₂ hydrogenation data. Its performance underscores 
its suitability for scenarios where both accuracy and model stability are crucial. The higher error 
metrics observed in Lasso and Elastic Net Regression highlight the challenges of feature selection 
and regularization in this context, suggesting that simpler models like Ridge Regression may offer 
better practical performance for optimizing catalyst efficiency. 

 

 
Figure 5. Comparison of Actual and Predicted Methanol Space-Time Yield for Ridge Regression Model 
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The performance of the Ridge Regression model was further evaluated through a visual 
comparison of actual versus predicted Methanol Space-Time Yield values. Figure 4 illustrates this 
comparison, presenting a scatter plot where each point represents an actual and predicted STY value 
pair. In Figure 5, the diagonal line serves as a reference for perfect prediction, with actual values 
plotted against their predicted counterparts. A strong alignment of points along this line would 
indicate high predictive accuracy. However, the plot reveals a mix of scenarios: some points are 
closely aligned with the diagonal line, suggesting that the model performs well in those regions, 
while other points show noticeable deviations. Certain areas of the plot exhibit clusters of points that 
are tightly packed along the diagonal, reflecting accurate predictions and indicating that the Ridge 
Regression model effectively captures the trends in methanol yield for those data points. In contrast, 
there are regions where points are dispersed further from the diagonal, suggesting discrepancies 
between actual and predicted values. These deviations highlight areas where the model's performance 
may be less reliable, potentially indicating regions with complex underlying patterns or outliers that 
the model struggles to capture. 

 

 
Figure 6. Residual Plot for Ridge Regression Model: Distribution of Residuals versus Predicted Values 

 
Figure 6 presents the residual plot for the Ridge Regression model, offering a detailed view 

of the relationship between predicted values and residuals. In this plot, residuals—representing the 
differences between actual values and model predictions—are displayed against the predicted values. 
The plot shows that most residuals are clustered around zero, indicating that the Ridge Regression 
model captures the underlying patterns in the data effectively. This distribution suggests that the 
model's predictions are generally accurate and that it successfully minimizes prediction errors 
without any discernible systematic bias. However, the plot also reveals some deviations from this 
trend. A few points display larger residuals, suggesting instances where the model's predictions differ 
significantly from the actual values. These deviations might highlight areas where the model could 
be overfitting or underfitting or where additional features might enhance the model's accuracy. 

 
3.4.  Determinants of Catalytic Efficiency in Methanol Production 

Following the evaluation of model performance, an analysis was performed to identify the 
features that most significantly influence catalytic activity in methanol production. This feature 
importance analysis, derived from the Ridge Regression model, offers valuable insights into the key 
variables impacting the efficiency of methanol synthesis. Figure 7 highlights the importance of 
various factors in the catalytic process.  
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Figure 7. Feature Importance Analysis for Catalytic Activity in Methanol Production 

 
Gas Hourly Space Velocity (GHSV) [cm³ h⁻¹ g_cat⁻¹] emerged as the most influential 

variable, with a coefficient of 0.5571. This significant positive impact suggests that higher GHSV 
improves the methanol production rate, making it a crucial parameter for optimizing catalyst 
performance. Molar Weight of Support 2 [g mol⁻¹] and Temperature [K] also play substantial roles, 
with coefficients of 0.2809 and 0.2515, respectively. Their considerable influence indicates that these 
factors are vital in enhancing methanol production efficiency, potentially by affecting the catalyst's 
stability and activity under varying operational conditions. 

Metal Loading [wt.%] follows with a coefficient of 0.2481, reinforcing its importance in the 
catalytic process. A higher metal loading generally enhances the catalyst's ability to facilitate the 
methanol synthesis reaction. Additional factors such as Pressure [MPa] and Molar Weight of Support 
1 [g mol⁻¹] contribute to the model's predictions with coefficients of 0.1561 and 0.1280. These 
variables, while important, have a somewhat lesser impact compared to GHSV and Temperature. 
Calcination Temperature [K] and Calcination Duration [h] also influence the catalytic activity, 
though to a moderate extent, with coefficients of 0.1254 and 0.1174. Catalyst Amount [g] shows a 
minor but positive effect with a coefficient of 0.0729, indicating a smaller but still relevant 
contribution to methanol production. 

Conversely, Promoter 1 Loading [wt.%], Total Molar Weight of Support [g mol⁻¹], and 
Specific Surface Area (SBET) [m² g⁻¹] have relatively minor or negative impacts. This suggests that 
these factors are less critical for optimizing catalytic performance in methanol production within the 
context of this study.The analysis underscores that GHSV, Molar Weight of Support 2, and 
Temperature are pivotal factors for enhancing catalytic activity. These insights are crucial for 
refining methanol production processes and improving catalyst design and operation in industrial 
applications. 
 
4. CONCLUSION 

This study aimed to enhance the understanding of factors affecting Methanol Space-Time 
Yield and to demonstrate the effectiveness of penalized regression models in predicting methanol 
production from CO₂ hydrogenation. The findings highlight that the Ridge Regression model 
outperformed other models, effectively capturing the intricate relationships between experimental 
variables and methanol yield. 
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Key factors influencing catalytic activity were identified, particularly Gas Hourly Space 
Velocity (GHSV) and Molar Weight of Support 2, which play crucial roles in optimizing methanol 
production processes. Additionally, the research emphasizes the importance of understanding these 
variables to refine catalytic strategies and enhance production efficiency. 

Looking forward, future research should focus on integrating additional variables and 
exploring alternative machine learning approaches to further refine predictive accuracy. Moreover, 
applying these insights to real-world catalytic systems could lead to significant improvements in 
industrial methanol production processes. Expanding research to include diverse catalytic 
environments or operational conditions will enhance the applicability and drive further advancements 
in the field. 
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